Втрапеции abcd(bc||ad) проведена средняя линия mn(m∈ab,n∈cd). укажите, при каких условиях можно сделать вывод, что трапеция abcd лежит в данной плоскости α. ab⊂α и m∈α mn⊂α ac∩bd=o,ad⊂α,o∈α cd⊂α и n∈α
равнобедренный треугольник вписанный круг, который делит боковую сторону в отношение 2 : 3, начиная от вершины, что лежит против основы. Найдите периметр треугольника, если его основа равна 12 см.Треугольник АВС, АВ=ВС, АС=12, точка М касание на АВ, точка Н касание на ВС, точка К касание на АС, ВМ/АМ=2/3 = ВН/СН, АМ=АК как касательные проведенные из одной точки =3, СК=СН как касательные проведенные из одной точки = 3АС=АК+СК=3+3=6 = 12 см1 часть=12/6=2АВ=3+2=5 частей = 5 х 2 =10 = ВСпериметр = 10+10+12=32
Обозначим стороны треугольника 3х, 4х и 5х, тогда периметр 3х + 4х + 5х = 12 х, что по условию равно 48 см Составляем уравнение 12х = 48 х=4 Тогда стороны 3·4=12 см, 4·4=16 см, 5·4= 20 см Проверка, периметр 12+16+20= 48 см. Стороны нового треугольника являются средними линиями данного треугольника. Средняя линия треугольника параллельна стороне треугольника и равна его половине. Значит стороны нового треугольника в два раза меньше сторон данного : 6 см, 8 см, 10 см ( см. рисунок) Периметр нового треугольника 6 + 8 + 10 =24 см ответ. 24 см
что по условию равно 48 см
Составляем уравнение
12х = 48
х=4
Тогда стороны 3·4=12 см, 4·4=16 см, 5·4= 20 см
Проверка, периметр 12+16+20= 48 см.
Стороны нового треугольника являются средними линиями данного треугольника.
Средняя линия треугольника параллельна стороне треугольника и равна его половине.
Значит стороны нового треугольника в два раза меньше сторон данного :
6 см, 8 см, 10 см ( см. рисунок)
Периметр нового треугольника 6 + 8 + 10 =24 см
ответ. 24 см