Втрапеции abcd боковые стороны ab и cd продолжены до их пересечения в точке m . bc большее основание( хз там не понятно) bm=2, 8; mc=1, 8; bc=3, 2; cd=2, 25; найдите ab и ad( может где-то перепутаны буквы к цифрам) ответьте быстрей все
АВСДЕФ - шестиугольник, АВ=10, ВС=СД=ДЕ=ЕФ=АФ. В тр-ке ВОК=ВО=D/2=5√2, ВК=ВК/2=5, sin(ВОК)=ВК/ВО=5/5√2=√2/2. ∠ВОК=45°, ∠АОВ=90°. ∠ОАВ=∠ОВА=45°. В оставшейся части окружности расположено пять равных тр-ков, градусная мера центрального угла каждого из них равна: ∠ВОС=(360-90)/5=54°. ∠ОВС=(180-54)/2=63°. Градусная мера угла шестиугольника, образованного двумя равными треугольниками, равна сумме углов при основании одного из них. ∠ВСД=63+63=126°. В шестиугольнике ∠С=∠Д=∠Е=∠Ф=126° - это ответ. ∠А=∠В=∠ОВА+∠ОВС=45+63=108° - это ответ.
В тр-ке ВОК=ВО=D/2=5√2, ВК=ВК/2=5, sin(ВОК)=ВК/ВО=5/5√2=√2/2.
∠ВОК=45°, ∠АОВ=90°.
∠ОАВ=∠ОВА=45°.
В оставшейся части окружности расположено пять равных тр-ков, градусная мера центрального угла каждого из них равна: ∠ВОС=(360-90)/5=54°. ∠ОВС=(180-54)/2=63°.
Градусная мера угла шестиугольника, образованного двумя равными треугольниками, равна сумме углов при основании одного из них.
∠ВСД=63+63=126°.
В шестиугольнике ∠С=∠Д=∠Е=∠Ф=126° - это ответ.
∠А=∠В=∠ОВА+∠ОВС=45+63=108° - это ответ.
4) Дано: <F
Найти: <K
<F = 30° => <K = 90-<F => <K = 60°.
<K = 60°.
5) Дано: LM, <L
Найти: KM(катет)
<L = 30°
По теорему о 30-градусном угле прямоугольно треугольника: катет, противоположный углу 30 градусов, равна половине гипотенузы. =>
KM = LM/2 = 4
KM = 4.
6) Дано: DF, <F
Найти: CF(гипотенузу)
<F = 60° => <C = 90-<F = 30°
Сторона, противоположная углу <F, это DF
По той же теореме, но обратным путём: CF(гипотенуза) = DF /2 => CF = 7*2 = 14
CF = 14.
7)
Дано: BO, <C
Найти: BA(гипотенузу)
<C = 60° =. <A = 90-<C = 30°
Биссектриса, разделила треугольник на 2 прямоугольного треугольника, так как углы, созданные биссектрисой — равны 90°.
BO = 3 => BA = 3*2 = 6 (так как BO — это стоорна противоположная углу 30 градусов(<A))
BA(гипотенуза) = 6.