Втрапеции abcd,основание ad и bc равны соответственно 34 и 9,а сумма углов пр основании ad равна 90°.найдите радиус окружности проходящий через точки а и в касающихся прямой сd,а ав=10 см.
Рассмотрим треугольник AED. По теореме о сумме углов треугольника: 180°=∠EDA+∠DAE+∠AED 180°=90°+∠AED ∠AED=90° Следовательно треугольник AED - прямоугольный. Рассмотрим треугольники AED и BEC. ∠AED - общий ∠EBC=∠EAD (т.к. это соответственные углы) Треугольники AED и BEC подобны (по первому признаку подобия треугольников). Тогда по определению подобия: AD/BC=AE/BE AD/BC=(AB+BE)/BE 34/9=(10+BE)/BE 34BE/9=10+BE 25BE/9=10 BE=90/25=3,6 Точка F - точка касания прямой CD и окружности. По теореме о касательной и секущей: EF2=BE*AE=BE*(AB+BE)=3,6(10+3,6)=48,96 EF=√48,96 Рассмотрим треугольник EOK. О - центр окружности OB - радиус окружности OK - серединный перпендикуляр к хорде AB ( третье свойство хорды) OK=EF (т.к. KEFO - прямоугольник) KB=AB/2 (т.к. OK - серединный перпендикуляр) По теореме Пифагора: OB2=OK2+KB2 OB2=(√48,96 )2+(10/2)2 OB2=48,96+25=73,96 OB=8,6 ответ: R=8,6
По теореме о сумме углов треугольника:
180°=∠EDA+∠DAE+∠AED
180°=90°+∠AED
∠AED=90°
Следовательно треугольник AED - прямоугольный.
Рассмотрим треугольники AED и BEC.
∠AED - общий
∠EBC=∠EAD (т.к. это соответственные углы)
Треугольники AED и BEC подобны (по первому признаку подобия треугольников).
Тогда по определению подобия:
AD/BC=AE/BE
AD/BC=(AB+BE)/BE
34/9=(10+BE)/BE
34BE/9=10+BE
25BE/9=10
BE=90/25=3,6
Точка F - точка касания прямой CD и окружности.
По теореме о касательной и секущей:
EF2=BE*AE=BE*(AB+BE)=3,6(10+3,6)=48,96
EF=√48,96
Рассмотрим треугольник EOK.
О - центр окружности
OB - радиус окружности
OK - серединный перпендикуляр к хорде AB ( третье свойство хорды)
OK=EF (т.к. KEFO - прямоугольник)
KB=AB/2 (т.к. OK - серединный перпендикуляр)
По теореме Пифагора:
OB2=OK2+KB2
OB2=(√48,96 )2+(10/2)2
OB2=48,96+25=73,96
OB=8,6
ответ: R=8,6