Вс задача: Разделить данный отрезок АВ пополам или провести серединный перпендикуляр к отрезку (рис. 1 внизу) Из концов отрезка АВ одним и тем же радиусом, большим половины отрезка АВ провести две дуги. Через точки их пересечения проводим прямую. Это серединный перпендикуляр к отрезку АВ.
Построение правильного восьмиугольника: Проводим диаметр АВ. Строим CD - серединный перпендикуляр к АВ. Хорду СВ делим пополам - прямая KL. Хорду АС делим пополам - прямая MN. Соединяем точки A, M, C, K, B, N, D и L. Получили правильный восьмиугольник.
Построение правильного пятиугольника. Строим два перпендикулярных диаметра АВ и CD. Делим пополам отрезок ОА - точка Е. Из Е радиусом ЕС проводим дугу, которая пересекает ОВ в точке F. Из С радиусом CF проводим дугу, которая пересекает окружность в точке G. CG - сторона правильного пятиугольника. Проводим радиусом CG из точки G как из центра дугу, которая пересекает окружность в точке K. GK - вторая сторона. И т.д. Получаем правильный пятиугольник CGKLM.
соединим концы хорд
получим четырехугольник
так как хорды параллельные - это вписанная равнобедренная трапеция
обозначим
R - радиус описанной окружности
c - боковая сторона трапеции
h = 42 высота трапеции
a = 36 и b = 48 - Основания
диагонали трапеции равны по теореме Пифагора
d^2 = h^2 + (a+(b-a)/2)^2 = 42^2 +(36 +(48-36)/2)^2 =3528
d = 42√2
боковая сторона
с^2 = h^2 + ((b-a)/2)^2 =42^2 +((48-36)/2)^2=1800
c = 30√2
диагональ(d), нижнее основание(b) и боковая сторона(c) образуют
треугольник , вершины которого лежат на той же описанной окружности
периметр треугольника P = b+c+d = 48+30√2+42√2=48+72√2
полупериметр треугольника p = 24+36√2
тогда радиус описанной окружности по известной формуле
R = (bcd) / 4√(p(p-b)(p-c)(p-d))=
=(48*30√2*42√2) / 4√((24+36√2)(24+36√2-48)(24+36√2-30√2)(24+36√2-42√2))= 30
ответ R=30
Разделить данный отрезок АВ пополам или провести серединный перпендикуляр к отрезку (рис. 1 внизу)
Из концов отрезка АВ одним и тем же радиусом, большим половины отрезка АВ провести две дуги. Через точки их пересечения проводим прямую. Это серединный перпендикуляр к отрезку АВ.
Построение правильного восьмиугольника:
Проводим диаметр АВ. Строим CD - серединный перпендикуляр к АВ.
Хорду СВ делим пополам - прямая KL.
Хорду АС делим пополам - прямая MN.
Соединяем точки A, M, C, K, B, N, D и L. Получили правильный восьмиугольник.
Построение правильного пятиугольника.
Строим два перпендикулярных диаметра АВ и CD.
Делим пополам отрезок ОА - точка Е.
Из Е радиусом ЕС проводим дугу, которая пересекает ОВ в точке F.
Из С радиусом CF проводим дугу, которая пересекает окружность в точке G. CG - сторона правильного пятиугольника.
Проводим радиусом CG из точки G как из центра дугу, которая пересекает окружность в точке K. GK - вторая сторона.
И т.д.
Получаем правильный пятиугольник CGKLM.