Проведём ВМ║АD. Четырехугольник АВМD- параллелограмм ( стороны попарно параллельны)
DM=AB=18 см
В ∆ ВМС ∠ВМС=∠АDМ.
МС=DC-DM=27-18=9
По т.косинусов -cos угла ВМС=[ВС*- (ВМ*+МС*)]/2BM•BC⇒
cos ∠BMC=18/54=1/3
Площадь параллелограмма равна произведению его соседних сторон на синус угла между ними.
S ABMD= AD•DM•sin ADM
sin2 α + cos2 α = 1⇒
sin ∠ADM=√(1-1/9)=√8/3=2√2/3
S ABMD=18•3•2√2•3=36√2 см²
S∆ ABD=SABMD/2=18√2
В трапеции треугольники, образованные при пересечении диагоналей, подобны. k=DC/АВ=27/18=3/2
Тогда DB=DK+KB=5 частей АН- общая высота треугольников АКD и АDВ .
Отношение площадей треугольников с равными высотами равно отношению их оснований.
S ∆ ADK=3/5 S∆ADB=3•18√2/5=54√2/5=10,8√2 см²
------Примечание. Это один из вариантов решения этой задачи. Другой дан мной 6.03 этого года.
Проведём ВМ║АD. Четырехугольник АВМD- параллелограмм ( стороны попарно параллельны)
DM=AB=18 см
В ∆ ВМС ∠ВМС=∠АDМ.
МС=DC-DM=27-18=9
По т.косинусов -cos угла ВМС=[ВС*- (ВМ*+МС*)]/2BM•BC⇒
cos ∠BMC=18/54=1/3
Площадь параллелограмма равна произведению его соседних сторон на синус угла между ними.
S ABMD= AD•DM•sin ADM
sin2 α + cos2 α = 1⇒
sin ∠ADM=√(1-1/9)=√8/3=2√2/3
S ABMD=18•3•2√2•3=36√2 см²
S∆ ABD=SABMD/2=18√2
В трапеции треугольники, образованные при пересечении диагоналей, подобны. k=DC/АВ=27/18=3/2
Тогда DB=DK+KB=5 частей АН- общая высота треугольников АКD и АDВ .
Отношение площадей треугольников с равными высотами равно отношению их оснований.
S ∆ ADK=3/5 S∆ADB=3•18√2/5=54√2/5=10,8√2 см²
------Примечание. Это один из вариантов решения этой задачи. Другой дан мной 6.03 этого года.