A₁=18-3*1 a₁=15 a₂₀=18-3*20 a₂₀=-42 S₂₀=(a₁+a₂₀)/2 *20 S₂₀=(15-42)/2*20 S₂₀=-27/2*20 S₂₀=-270 Сумма первых 20 членов прогрессии равна -270 a₂₀=a₁+19d=-42 a₁+19d=-42 15+19d=-42 19d=-42-15 19d=-57 d=-3 Составим арифметическую прогрессию an 15;12;9;6;3;0;-3;... an=a₁+(n-1)d=0 15+(n-1)d=0 (n-1)*(-3)=-15 -3n+3=-15 -n+1=-5 -n=-5-1 -n=-6 n=6 Сумма будет наибольшей при количестве членов арифметической прогрессии равной 6.Но если взять сумму первых пяти членов прогрессии,то суммы получатся равные с суммой 6 членов прогрессии. Значит,при сумме 5 и 6 членов прогрессии,начиная с первого.
· отрезок прямой, перпендикулярной плоскости, соединяющий данную точку с точкой на плоскости называется перпендикуляром из данной точки к данной плоскости.
· конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.
· любой отрезок, соединяющий данную точку с точкой на плоскости и не являющийся перпендикуляром к плоскости, называется наклонной.
· конец отрезка, лежащий в плоскости, называется основанием наклонной.
рис. 1.
на рисунке из точки а проведены к плоскости α перпендикуляр ав и наклонная ас. точка в - основание перпендикуляра, точка с - основание наклонной, вс - проекция наклонной ас на плоскость α.
2) доказательство того, что перпендикуляр корочек наклонной
на рисунке 2 изображена плоскость α, перпендикуляр к ней ao, наклонная ab, а также показан отрезок bo, соединяющий основания наклонной и перпендикуляра. отрезки ao, bo и ab образуют δaob.
рис. 2.
рассмотрим δaob, из определения перпендикуляра следует, что он прямоугольный. перпендикуляр ao является катетом этого треугольника, а наклонная ab – его гипотенузой. катет прямоугольного треугольника всегда меньше его гипотенузы (по теореме пифагора), следовательно, перпендикуляр всегда короче наклонной.
3) определение проекции
отрезок, соединяющий основания перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
отрезок bo на рисунке 2 – является проекцией наклонной ab.
4) теорема о сравнительной длине наклонных и их проекций
а) любая наклонная больше своей проекции.
доказательство:
вновь рассмотрим δaob, изображенный на рис. 2, из определения перпендикуляра следует, что он прямоугольный. проекция bo является катетом этого треугольника, а наклонная ab – его гипотенузой, т. к. катет прямоугольного треугольника всегда меньше его гипотенузы, следовательно, проекция наклонной на плоскость всегда короче самой наклонной.
б) равные наклонные имеют равные проекции
доказательство: рассмотрим треугольники aob и aod, они равны, т. к. равны их гипотенузы ab и ad, и углы aob и aod (они прямые), а сторона ao у них общая. из равенства треугольников следует и равенство их сторон bo = od, что и требовалось доказать.
в) если проекции наклонных равны, то и наклонные равны. доказывается аналогично утверждению б.
г) большей наклонной соответствует большая проекция.
доказательство:
рассмотрим прямоугольные треугольники aob и aod, ab > ad.
=
=
но так как ab > ad => ab2 > ad2 => > =>
=> bo > do. что и требовалось доказать.
д) из двух наклонных больше та, у которой проекция больше. доказывается аналогично г.
a₁=15
a₂₀=18-3*20
a₂₀=-42
S₂₀=(a₁+a₂₀)/2 *20
S₂₀=(15-42)/2*20
S₂₀=-27/2*20
S₂₀=-270
Сумма первых 20 членов прогрессии равна -270
a₂₀=a₁+19d=-42
a₁+19d=-42
15+19d=-42
19d=-42-15
19d=-57
d=-3
Составим арифметическую прогрессию an
15;12;9;6;3;0;-3;...
an=a₁+(n-1)d=0
15+(n-1)d=0
(n-1)*(-3)=-15
-3n+3=-15
-n+1=-5
-n=-5-1
-n=-6
n=6
Сумма будет наибольшей при количестве членов арифметической прогрессии равной 6.Но если взять сумму первых пяти членов прогрессии,то суммы получатся равные с суммой 6 членов прогрессии.
Значит,при сумме 5 и 6 членов прогрессии,начиная с первого.
1) определение перпендикуляра и наклонной.
пусть дана плоскость и не лежащая на ней точка.
тогда:
· отрезок прямой, перпендикулярной плоскости, соединяющий данную точку с точкой на плоскости называется перпендикуляром из данной точки к данной плоскости.
· конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.
· любой отрезок, соединяющий данную точку с точкой на плоскости и не являющийся перпендикуляром к плоскости, называется наклонной.
· конец отрезка, лежащий в плоскости, называется основанием наклонной.
рис. 1.
на рисунке из точки а проведены к плоскости α перпендикуляр ав и наклонная ас. точка в - основание перпендикуляра, точка с - основание наклонной, вс - проекция наклонной ас на плоскость α.
2) доказательство того, что перпендикуляр корочек наклонной
на рисунке 2 изображена плоскость α, перпендикуляр к ней ao, наклонная ab, а также показан отрезок bo, соединяющий основания наклонной и перпендикуляра. отрезки ao, bo и ab образуют δaob.
рис. 2.
рассмотрим δaob, из определения перпендикуляра следует, что он прямоугольный. перпендикуляр ao является катетом этого треугольника, а наклонная ab – его гипотенузой. катет прямоугольного треугольника всегда меньше его гипотенузы (по теореме пифагора), следовательно, перпендикуляр всегда короче наклонной.
3) определение проекции
отрезок, соединяющий основания перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
отрезок bo на рисунке 2 – является проекцией наклонной ab.
4) теорема о сравнительной длине наклонных и их проекций
а) любая наклонная больше своей проекции.
доказательство:
вновь рассмотрим δaob, изображенный на рис. 2, из определения перпендикуляра следует, что он прямоугольный. проекция bo является катетом этого треугольника, а наклонная ab – его гипотенузой, т. к. катет прямоугольного треугольника всегда меньше его гипотенузы, следовательно, проекция наклонной на плоскость всегда короче самой наклонной.
б) равные наклонные имеют равные проекции
доказательство: рассмотрим треугольники aob и aod, они равны, т. к. равны их гипотенузы ab и ad, и углы aob и aod (они прямые), а сторона ao у них общая. из равенства треугольников следует и равенство их сторон bo = od, что и требовалось доказать.
в) если проекции наклонных равны, то и наклонные равны. доказывается аналогично утверждению б.
г) большей наклонной соответствует большая проекция.
доказательство:
рассмотрим прямоугольные треугольники aob и aod, ab > ad.
=
=
но так как ab > ad => ab2 > ad2 => > =>
=> bo > do. что и требовалось доказать.
д) из двух наклонных больше та, у которой проекция больше. доказывается аналогично г.