1). Дано: АВСD - параллелограмм, АК - биссектриса, ВК=19 см, КС=10 см. Найти Р (АВСD).
Рассмотрим ΔАВК - равнобедренный (∠ВАК=∠КАD по определению биссектрисы, ∠ВКА=∠КАD как внутренние накрест лежащие при ВС║АD и секущей АК), значит АВ=ВК=19 см.
АD=ВС=19+10=29 см; СD=АВ=19 см (как противоположные стороны параллелограмма)
Р=19*2+29*2=96 см.
2) Дано: АВСD - параллелограмм, DК - биссектриса, ВК=19 см, КС=10 см. Найти Р (АВСD).
Рассмотрим ΔDCК - равнобедренный (∠АDК=∠КDC по определению биссектрисы, ∠CКD=∠КDA как внутренние накрест лежащие при ВС║АD и секущей DК), значит KC=CD=10 см.
АD=ВС=19+10=29 см; СD=АВ=10 см (как противоположные стороны параллелограмма)
1). 96 см.; 2). 78 cм.
Объяснение: задача имеет 2 варианта решения
1). Дано: АВСD - параллелограмм, АК - биссектриса, ВК=19 см, КС=10 см. Найти Р (АВСD).
Рассмотрим ΔАВК - равнобедренный (∠ВАК=∠КАD по определению биссектрисы, ∠ВКА=∠КАD как внутренние накрест лежащие при ВС║АD и секущей АК), значит АВ=ВК=19 см.
АD=ВС=19+10=29 см; СD=АВ=19 см (как противоположные стороны параллелограмма)
Р=19*2+29*2=96 см.
2) Дано: АВСD - параллелограмм, DК - биссектриса, ВК=19 см, КС=10 см. Найти Р (АВСD).
Рассмотрим ΔDCК - равнобедренный (∠АDК=∠КDC по определению биссектрисы, ∠CКD=∠КDA как внутренние накрест лежащие при ВС║АD и секущей DК), значит KC=CD=10 см.
АD=ВС=19+10=29 см; СD=АВ=10 см (как противоположные стороны параллелограмма)
Р=10*2+29*2=78 см.
Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°