Втреугольник abc вписана окружность, которая касается стороны ab, bc, ac соответственно в точках m, d, n. известно, что na = 2, nc =3, угол bca = пи/3 . найти мд
Касательные к окружности,проведённые из одной точки, равны, значит АМ=АN=2, СN=СД=3. Пусть ВМ=ВД=х, тогда АС=АМ+ВМ=2+х, ВС=СД+ВД=3+х. Площадь треугольника АВС: S=(1/2)ab·sinα=(1/2)АС·ВС·sinC=5(3+x)·√3/4, Также S=pr, где р=(АВ+ВС+АС)/2=(2+х+3+х+5)/2=5+х. В тр-ке NOC ∠ОСN=∠C/2=30° (СО - биссектриса), NO=NC·tg(∠OCN)=3/√3=√3. r=√3. S=(5+x)·√3. Объединим два полученных уравнения площади треугольника АВС: 5(3+х)·√3/4=(5+х)·√3, 15+5х=20+4х, х=5. В четырёхугольнике МВДО ∠ВМО=∠ВДО=90°, значит ВО⊥МД. ВО и МД пересекаются в точке К. В прямоугольном тр-ке ВОМ МК - высота. МК=ВМ·МО/ВО. ВО²=ВМ²+МО²=5²+3=28. ВО=√28=2√7. МК=5·√3/(2√7)=5√21/14. Треугольники ВОМ и ВОД равны по трём сторонам, значит МК=ДК. МД=2МК=5√21/7 - это ответ.
Пусть ВМ=ВД=х, тогда АС=АМ+ВМ=2+х, ВС=СД+ВД=3+х.
Площадь треугольника АВС: S=(1/2)ab·sinα=(1/2)АС·ВС·sinC=5(3+x)·√3/4,
Также S=pr, где р=(АВ+ВС+АС)/2=(2+х+3+х+5)/2=5+х.
В тр-ке NOC ∠ОСN=∠C/2=30° (СО - биссектриса),
NO=NC·tg(∠OCN)=3/√3=√3. r=√3.
S=(5+x)·√3.
Объединим два полученных уравнения площади треугольника АВС:
5(3+х)·√3/4=(5+х)·√3,
15+5х=20+4х,
х=5.
В четырёхугольнике МВДО ∠ВМО=∠ВДО=90°, значит ВО⊥МД.
ВО и МД пересекаются в точке К.
В прямоугольном тр-ке ВОМ МК - высота. МК=ВМ·МО/ВО.
ВО²=ВМ²+МО²=5²+3=28.
ВО=√28=2√7.
МК=5·√3/(2√7)=5√21/14.
Треугольники ВОМ и ВОД равны по трём сторонам, значит МК=ДК.
МД=2МК=5√21/7 - это ответ.