Чтобы найти координаты вектора, нужно от координат конца отнять соответствующие координаты начала. Очевидно, что при смене местами начала и конца вектора, например ВС, у нового, в этом случае СВ, соответвующие координаты будут равны по модулю и противоположны по знаку.
қиық пирамида көлемі
V=7√3 /36 см³
а2=2см
а1=1 см
α=30°
V- ?
қиық пирамида төменгі табанындағы дұрыс үшбұрыштың сырттай сызылған шеңбердің радиусы
Rт=a2/√3=2/√3 см
жоғарғы
Rж=а1/√3=1/√3 см
пирамида қиылмаған жағдайдағы биіктігі (пирамида төбесінен төмендегі табанға дейінгі )
Hтөм= tgα×Rт=tg30° ×2/√3=√3/3 × 2/√3=2/3 см
жоғарғы табан биіктігі
Hжоғ=tgα×Rж=tg30°×1/√3 =√3/3 × 1/√3=1/3 см
қиылған пирамида биіктігі
Hқ=Нтөм- Нжоғ=2/3 - 1/3 = (2 - 1)/3=1/3 см
жоғарғы табан ауданы ( дұрыс тең қабырғалы үшбұрыштың ауданы формуласымен )
S1=a²√3 /4= 1² ×√3 /4= √3 /4 см²
төменгі табан ауданы
S2=а²√3 /4=2²×√3 /4= 4×√3 /4=√3 см²
қиық пирамида көлемі
V=1/3 × H×(S1+√S1×S2 + S2)
V=1/3 × 1/3×(√3/4 + √(√3/4 × √3) + √3 )=
=1/9×(√3 /4 +√3 /2 + √3)=1/9×( (√3 +2√3 + 4√3)/4 )=
=1/9 × 7√3/ 4=7√3 /36 см³
AB и DC, BA и CD, AD и BC, DA и CB
Объяснение:
Чтобы найти координаты вектора, нужно от координат конца отнять соответствующие координаты начала. Очевидно, что при смене местами начала и конца вектора, например ВС, у нового, в этом случае СВ, соответвующие координаты будут равны по модулю и противоположны по знаку.
АВ(3-4; 2-9; 5+1), АВ(-1; -7; 6), => BA(1; 7; -6)
AC(-4-4; -5-9; 4+1), AC(-8; -14; 5) => CA(8; 14; -5)
AD(-3-4; 2-9; -2+1), AD(-7; -7; -1) => DA(7; 7; 1)
ВС(-4-3; -5-2; 4-5), ВС(-7; -7; -1) => CB(7; 7; 1)
BD(-3-3; 2-2; -2-5), BD(-6; 0; -7) => DB(6; 0; 7)
CD(-3+4; 2+5; -2-4), CD(1; 7; -6) => DC(-1; -7; 6)
Равные векторы имеют равные координаты, такие пары AB и DC, BA и CD, AD и BC, DA и CB.