14) Так как P=2*(a+b), следовательно a+b = P/2. Тогда 3 + b = 9.2 и b = 9.2-3=6.2. 7 + b = 9.2, тогда b = 9.2 - 7 = 2.2
15) P=24 a1=x, b1 = x+4, следовательно 24 = 2*(x+x+4), 12 = 2x +4, 2x=8, x=4. Тогда a = 4, b = 8. P=24 a1=x, b1 = x-6, следовательно 24 = 2*(x+x-6), 12 = 2x -6, 2x=18, x=9. Тогда a = 9, b = 3. P=24 a1=x, b1 = 2x, следовательно 24 = 2*(x+2x), 12 = 3x, x=4. Тогда a = 4, b = 8.
16) a+b = 12 и a:b = 1:2, следовательно a=x b =2x, тогда x+2x=12, x=4 и a=4 b = 8
a+b = 12 и a:b = 3:2, следовательно a=3x b =2x, тогда 3x+2x=12, x=2.4 и a=7.2 b = 4.8
17)в параллелограмме противоположные углы равны,а односторонние в сумме дают 180 градусов. Следовательно в параллелограмме два угла по 42 градуса и 2 угла по 180-42 = 138 градусов.
Площадь треугольника АСD по формуле Герона: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны. В нашем случае р=14:2=7, тогда S=√(7*1*2*4) = 2√14. S=(1/2)*h*AD, отсюда высота треугольника АСD равна h=2S/AD=(2√14)/3. Тогда катет HD по Пифагору равен HD=√(CD²-h²)=√(9-56/9)=5/3. Следовательно, отрезок АН=6-5/3=(18-5)/3=13/3. По свойству высоты, опущенной из тупого угла на большее основание равнобокой трапеции, отрезок АН равен полусумме оснований трапеции. Тогда ее площадь равна S=АН*h=(13/3)*(2√14)/3=26√14/9 ≈ 12,1. ответ: S=26√14/9 ≈ 12,1.
Периметр равен P=2*(a+b)
12) P1 = 2*(6+4)=20 P2 = 2*(11.5+7)=37
13) Пусть а=12,4, следовательно b1 = 12.4 - 0.8 = 11.6, b2 = 12.4 + 1.6 = 14, b3 = 12.4 / 4 = 3.1. Тогда P1 = 2*(12.4+11.6) = 48? P2 = 2*(12.4 + 14) = 52.8, P3= 2*(12.4+3.1)=31
14) Так как P=2*(a+b), следовательно a+b = P/2. Тогда 3 + b = 9.2 и b = 9.2-3=6.2. 7 + b = 9.2, тогда b = 9.2 - 7 = 2.2
15) P=24 a1=x, b1 = x+4, следовательно 24 = 2*(x+x+4), 12 = 2x +4, 2x=8, x=4. Тогда a = 4, b = 8. P=24 a1=x, b1 = x-6, следовательно 24 = 2*(x+x-6), 12 = 2x -6, 2x=18, x=9. Тогда a = 9, b = 3. P=24 a1=x, b1 = 2x, следовательно 24 = 2*(x+2x), 12 = 3x, x=4. Тогда a = 4, b = 8.
16) a+b = 12 и a:b = 1:2, следовательно a=x b =2x, тогда x+2x=12, x=4 и a=4 b = 8
a+b = 12 и a:b = 3:2, следовательно a=3x b =2x, тогда 3x+2x=12, x=2.4 и a=7.2 b = 4.8
17)в параллелограмме противоположные углы равны,а односторонние в сумме дают 180 градусов. Следовательно в параллелограмме два угла по 42 градуса и 2 угла по 180-42 = 138 градусов.
S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны.
В нашем случае р=14:2=7, тогда S=√(7*1*2*4) = 2√14.
S=(1/2)*h*AD, отсюда высота треугольника АСD равна
h=2S/AD=(2√14)/3.
Тогда катет HD по Пифагору равен HD=√(CD²-h²)=√(9-56/9)=5/3.
Следовательно, отрезок АН=6-5/3=(18-5)/3=13/3.
По свойству высоты, опущенной из тупого угла на большее основание равнобокой трапеции, отрезок АН равен полусумме оснований трапеции. Тогда ее площадь равна
S=АН*h=(13/3)*(2√14)/3=26√14/9 ≈ 12,1.
ответ: S=26√14/9 ≈ 12,1.