Дано : Треугольник ABC AM, BN - медианы Д-ть: Треугольник AOB подобен треугольнику MON Решение: Нужно произвести дополнительное построение и провести отрезок MN ( Для того, чтоб получить треугольник MON, который нам нужен для решения задачи) 1)ABC - треугольник AM,BN - медианы O- точка пересечения Из этого следует, что AO\OM = 2\1 ; BO\ON = 2\1 ( По теореме о медианах треугольника. Медины точкой пересечения делятся на два отрезка, которые относятся как 2 к 1 ) 2)Треугольники AOB и MON AO\OM = 2\1 BO\ON = 2\1 Углы BOA и MON - вертикальные Из этого следует, что треугольники подобны по второму признаку ( Две сходственные стороны подобны, а угол между ними равен) Что и требовалось доказать
Дано :
Треугольник ABC
AM, BN - медианы
Д-ть:
Треугольник AOB подобен треугольнику MON
Решение:
Нужно произвести дополнительное построение и провести отрезок MN ( Для того, чтоб получить треугольник MON, который нам нужен для решения задачи)
1)ABC - треугольник
AM,BN - медианы
O- точка пересечения
Из этого следует, что AO\OM = 2\1 ; BO\ON = 2\1 ( По теореме о медианах треугольника. Медины точкой пересечения делятся на два отрезка, которые относятся как 2 к 1 )
2)Треугольники AOB и MON
AO\OM = 2\1
BO\ON = 2\1
Углы BOA и MON - вертикальные
Из этого следует, что треугольники подобны по второму признаку ( Две сходственные стороны подобны, а угол между ними равен)
Что и требовалось доказать
угол между плоскостями квадрата и прямоугольника ---это угол BAC на рисунке
(т.к. АВ _|_ их общей стороне---как стороны квадрата и АС _|_ их общей стороне---как стороны прямоугольника...)
в треугольнике BAC все стороны известны: АВ---сторона квадрата = 36 = 6*6 => общая сторона = 6
АС---сторона прямоугольника = 96/6 = 16
ВС = 14
по т.косинусов: 14^2 = 6^2 + 16^2 - 2*6*16*cos(BAC)
12*16*cos(BAC) = 36 + 16^2 - 14^2 = 36 + (16-14)(16+14) = 36 + 2*30 = 36+60 = 96
cos(BAC) = 96 / (12*16) = 6/12 = 1/2
угол ВАС = 60 градусов