Перпендикулярные плоскости образуют двугранный угол, линейный угол которого образован лучами с общим началом на ребре двугранного угла, проведенными в его гранях перпендикулярно ребру.
Здесь грани - плоскости треугольников АВС и АВС1, ребро двугранного угла – АВ.
НС⊥АВ; НС1⊥АВ, угол СНС1=90° по условию.
∆ АВС и ∆ АВС1 равнобедренные прямоугольные, углы при их общем основании АВ равны 45°, ⇒ они равны по 2-признаку равенства треугольников.
∆ СНС1- прямоугольный. Его катеты равны высотам=медианам равных треугольников. Следовательно, он равнобедренный.
Медиана прямоугольного треугольника равна половине гипотенузы. ⇒
НС=НС1=3
СС1=3•sin45°=3√2 см
2)
Расстояние от точки М до плоскости - длина отрезка МН, проведенного между ними перпендикулярно. МН=18
Расстояние от точки М до ребра двугранного угла - длина отрезка МК, проведенного между ними перпендикулярно.
∆ МКН - прямоугольный. Его гипотенуза МК=МН:sin60°
С точки зрения "трудности" эта задача - элементарная. В заблуждение вводят "сложные корни". Несколько удивляет ответ - от радиуса окружности он не зависит.
Если в треугольнике АВС обозначить Ф1 = угол ВСА, Ф2 = угол ВАС,
1).
Перпендикулярные плоскости образуют двугранный угол, линейный угол которого образован лучами с общим началом на ребре двугранного угла, проведенными в его гранях перпендикулярно ребру.
Здесь грани - плоскости треугольников АВС и АВС1, ребро двугранного угла – АВ.
НС⊥АВ; НС1⊥АВ, угол СНС1=90° по условию.
∆ АВС и ∆ АВС1 равнобедренные прямоугольные, углы при их общем основании АВ равны 45°, ⇒ они равны по 2-признаку равенства треугольников.
∆ СНС1- прямоугольный. Его катеты равны высотам=медианам равных треугольников. Следовательно, он равнобедренный.
Медиана прямоугольного треугольника равна половине гипотенузы. ⇒
НС=НС1=3
СС1=3•sin45°=3√2 см
2)
Расстояние от точки М до плоскости - длина отрезка МН, проведенного между ними перпендикулярно. МН=18
Расстояние от точки М до ребра двугранного угла - длина отрезка МК, проведенного между ними перпендикулярно.
∆ МКН - прямоугольный. Его гипотенуза МК=МН:sin60°
MK=18:(√3/2)=12√3
С точки зрения "трудности" эта задача - элементарная. В заблуждение вводят "сложные корни". Несколько удивляет ответ - от радиуса окружности он не зависит.
Если в треугольнике АВС обозначить Ф1 = угол ВСА, Ф2 = угол ВАС,
то совершенно очевидно, что
угол КОВ = Ф1 + Ф2; (полусумма центральных углов)
AK = 2*R*sin(Ф1/2 + Ф2/2);
угол КАВ = (угол КОВ)/2 = Ф1/2 - Ф2/2;
и АМ = АК*cos(Ф1/2 - Ф2/2) = R*2*sin(Ф1/2 + Ф2/2)*cos(Ф1/2 - Ф2/2) = R*(sin(Ф1) + sin(Ф2)) = = АВ/2 + ВС/2 = 9/2;
Проверьте, может я чего напутал :) знак не тот где поставил