АВСД - трапеция, АС=3 , ВД=4 , средняя линия =2,5 Проведём из т.С прямую СМ║ВД (точка М - точка пересечения СМ и АД) ВСМД - параллелограмм ⇒ ВС=ДМ=3 , ВД=СМ=4 . Так как средн. линия = 2,5 , то 2,5=(АД+ВС):2 ⇒ АД+ВС=2·2,5=5 АМ=АД+ДМ=АД+ВС=5 ΔАСМ имеет площадь ,равную площади трапеции, так как S(трапеции)=(АВ+ВС)/2 ·h = 1/2·AM·h (h - высота трапеции СН) S(ΔАСМ)=1/2·АМ·h (h - высота ΔАСМ = высоте трапеции СН) Найдём площадь ΔАСМ, заметив, что он прямоугольный, так как АМ=5, а √(АС²+СМ²)=√(3²+4²)=√25=5, то есть выполняются условия теоремы Пифагора: АМ²=АС²+СМ² . S(ΔАСМ)=1/2·АС·СМ=1/2·3·4=6 ⇒ S(АВСД)=6
P.S. Если бы ΔАСМ не оказался прямоугольным, то его площадь можно было бы найти по формуле Герона, т.к. все его стороны оказались известными.
Пусть ABCD - трапеция, в которую вписана окружность с центром в т. О. Радиус окружности можно вычислить с отрезков, на которые точка касания окружности делит боковую сторону трапеции. CE = 8 см DE = 18 cм r = √(CE * DE) r = √(8 * 18) = √144 = 12 (см)
Отрезки касательных к окружности, проведенных из одной точки, равны, значит BK = BF, CF = CE = 8 см, DE = DM = 18 см, AM = АК = Х Меньшее основание трапеции равно 14 см, т.к. бОльше основание AD = AM + 18 > 14 ⇒ BC = 14 cм ⇒ BF = BK = BC - CF = 14 - 8 = 6 (см)
Радиус, проведенный в точку касания, перпендикудярен касательной.
В прямоугольном треугольнике BKO: катет BK = 6cм катет ОК = r = 12 cм BO - гипотенуза
Проведём из т.С прямую СМ║ВД (точка М - точка пересечения СМ и АД)
ВСМД - параллелограмм ⇒ ВС=ДМ=3 , ВД=СМ=4 .
Так как средн. линия = 2,5 , то 2,5=(АД+ВС):2 ⇒ АД+ВС=2·2,5=5
АМ=АД+ДМ=АД+ВС=5
ΔАСМ имеет площадь ,равную площади трапеции, так как
S(трапеции)=(АВ+ВС)/2 ·h = 1/2·AM·h (h - высота трапеции СН)
S(ΔАСМ)=1/2·АМ·h (h - высота ΔАСМ = высоте трапеции СН)
Найдём площадь ΔАСМ, заметив, что он прямоугольный, так как
АМ=5, а √(АС²+СМ²)=√(3²+4²)=√25=5, то есть выполняются условия теоремы Пифагора: АМ²=АС²+СМ² .
S(ΔАСМ)=1/2·АС·СМ=1/2·3·4=6 ⇒ S(АВСД)=6
P.S. Если бы ΔАСМ не оказался прямоугольным, то его площадь можно было бы найти по формуле Герона, т.к. все его стороны оказались известными.
CE = 8 см
DE = 18 cм
r = √(CE * DE)
r = √(8 * 18) = √144 = 12 (см)
Отрезки касательных к окружности, проведенных из одной точки, равны, значит
BK = BF, CF = CE = 8 см, DE = DM = 18 см, AM = АК = Х
Меньшее основание трапеции равно 14 см, т.к. бОльше основание
AD = AM + 18 > 14 ⇒ BC = 14 cм ⇒ BF = BK = BC - CF = 14 - 8 = 6 (см)
Радиус, проведенный в точку касания, перпендикудярен касательной.
В прямоугольном треугольнике BKO:
катет BK = 6cм
катет ОК = r = 12 cм
BO - гипотенуза
по теореме Пифагора
BO² = BK² + OK²
BO² = 6² + 12² = 36 + 144 = 180
BO = √180 = 6√5 (см)
в прямоугольном треугольнике AOB:
катет BO = 6√5 cм
гипотенуза AB = BK + AK = 6 + Х
AO = катет
по теореме Пифагора
AB² = AO² + BO²
AO² = AB² - BO²
AO² = (6 + x)² - (6√5)²
AO² = 36 + 12x + x² - 36*5 = x² + 12x - 144
в прямоугольном треугольнике AMO:
катет ОМ = r = 12 см
AO - гипотенуза, AO² = x² + 12x -144
катет AM = x
по теореме Пифагора
AO² = OM² + AM²
x² + 12x -144 = 12² + x²
x² - x² + 12x = 144 + 144
12x = 288
x = 24 (cм)
AM = АК = 24 см
AD = AM + DM
AD = 24 + 18 = 42 (cм)
Второе основание равно 42см
(вместо черточек я отметила равные отрезки цифрами)