Втреугольнике abc известны длины сторон ав 70 и ас 87,5, точка о -центр окружности, описанной около треугольника авс. прямая bd, перпендикулярная ао, пересекает сторону ас в точке d. найдите cd
Пусть тропеция будет АВСD ,Где AD-большее основание ВС-меньшее основание ,уголАВС-тупой, ВД - его биссектриса, углы АВД=ДВС=у угол ВАД=180-2у (углы ВАД и АВС - односторонние при секущей АВ). Тогда в треугольнике АВД угол А равен 180-2у, АВД - у, а значит угол ВДА - тоже у (по сумме углов треугольника), и треугольник АВД - равнобедренный. Тогда АВ=АД Пусть АВ=АД=СД=х, тогда по условию 3х +3= 42 , х =13
Так как около любой равнобокой трапеции можно описать окружность, то ее площадь можно рассчитать по формуле Герона. Полупериметр р=21,S=SQR((21-8)^3 *(21-3))=96. sqr() - корень квадратный.
) ответ да. Прямые параллельны, если они лежат на одной плоскости, перпендикулярной двум первым плоскостям.
 красные прямые лежат в параллельных плоскостях и при этом параллельны в третьей плоскости
б) ответ нет. Признак скрещивающихся прямых.
Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.
Т. е. если прямая по условию находится в параллельной плоскости, она не как не может эту плоскость пересекать
Пусть тропеция будет АВСD ,Где AD-большее основание ВС-меньшее основание ,уголАВС-тупой, ВД - его биссектриса, углы АВД=ДВС=у угол ВАД=180-2у (углы ВАД и АВС - односторонние при секущей АВ).
Тогда в треугольнике АВД угол А равен 180-2у, АВД - у, а значит угол ВДА - тоже у (по сумме углов треугольника), и треугольник АВД - равнобедренный. Тогда АВ=АД Пусть АВ=АД=СД=х, тогда по условию 3х +3= 42 , х =13
Так как около любой равнобокой трапеции можно описать окружность, то ее площадь можно рассчитать по формуле Герона.
Полупериметр р=21,S=SQR((21-8)^3 *(21-3))=96. sqr() - корень квадратный.
) ответ да. Прямые параллельны, если они лежат на одной плоскости, перпендикулярной двум первым плоскостям.
 красные прямые лежат в параллельных плоскостях и при этом параллельны в третьей плоскости
б) ответ нет. Признак скрещивающихся прямых.
Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.
Т. е. если прямая по условию находится в параллельной плоскости, она не как не может эту плоскость пересекать
5
5
Нравится
Комментировать