Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
а В математике его называют «куб».
Рассмотрим это геометрическое тело.

Поверхность куба состоит из квадратов.
У квадрата все стороны равны.
Все квадраты, из которых состоит поверхность куба, одинаковы.
Их называют гранями.
Поэтому куб называют многогранником.
У куба 6 граней.

У каждой грани есть стороны.
Стороны называют ребрами.
У куба 12 ребер.
Каждое ребро относится к двум граням куба.
Так как у квадрата все стороны равны, то и все грани куба имеют одинаковую длину.
Концы ребер называются вершинами.
Каждое ребро соединяет две вершины.
Вершин у куба – 8.
Грань, ребро, вершина – это элементы куба.
В одной вершине сходится 3 ребра, каждая грань имеет 4 соседних грани, у каждой грани – 4 ребра.
Возьмем куб, выполненный из бумаги. Попробуем его развернуть. Получится развертка куба.

Развертка – это выкройка куба.
Она состоит из 6 квадратов, расположенных в таком порядке, что из них можно сложить или склеить модель куба.
Перейдем к практической части.
Как изобразить куб на плоскости, например, на листе бумаги?
Куб – объемный предмет. Если обвести основание куба – получится квадрат. Это не является изображением куба.
Для наглядного изображения куба достаточно показать три его грани, например, верхняя, правая и передняя. Также можно сделать чертеж куба.

Для выполнения чертежа построим сначала переднюю грань, сзади выше и правее - заднюю грань, проведем нижние и верхние ребра боковых граней.
Ребра, которые не видны, изображают пунктирной линией, остальные сплошной линией.
Отметим, что на рисунке и чертеже мы не можем передать реальные размеры всех ребер куба.
Итак, в этом уроке Вы познакомились с геометрическим телом «куб», а также научились его изображать на плоскости.