Втреугольнике abc провели биссектрису ck, а в треугольнике bck - биссектрису kl. прямые ac и kl пересекаются в точке m. извесно, что ∠bac > ∠bca. докажите, что ak + kc > am.
1) На продолжении СК за точку К возьмем точку Е так, что KE=AK, т.е. AK+KC=CE. 2) Т.к. KL - биссектриса ∠CKB и углы AKC и EKB вертикальные, то ∠AKM=∠EKM и соответственно треугольники AKM и EKM равны по 1-му признаку. Значит, AM=ME. 3) ∠CME=180°-∠MCE-∠MEC=180°-∠C/2-(180°-∠A)=∠A-∠C/2. Т.к. по условию ∠A-∠C/2>∠C/2, то ∠CME>∠MCE и значит СE>ME (т.к. в треугольнике напротив большего угла лежит большая сторона), т.е. в силу 1) и 2) получаем AK+KC>AM.
2) Т.к. KL - биссектриса ∠CKB и углы AKC и EKB вертикальные, то ∠AKM=∠EKM и соответственно треугольники AKM и EKM равны по 1-му признаку. Значит, AM=ME.
3) ∠CME=180°-∠MCE-∠MEC=180°-∠C/2-(180°-∠A)=∠A-∠C/2. Т.к. по условию ∠A-∠C/2>∠C/2, то ∠CME>∠MCE и значит СE>ME (т.к. в треугольнике напротив большего угла лежит большая сторона), т.е. в силу 1) и 2) получаем AK+KC>AM.