Втреугольнике abc стороны ab,bc и ac равны соответственно 4 ,5 и 6на стороне ac находится центр окружности, касающейся сторон ab и bc.найдите произведение длин отрезков, на которые центр окружности делит сторону ac
Отрезки касательных к окружности (BA1, BC1), проведенных из одной точки, равны и составляют равные углы с прямой (BO), проходящей через эту точку и центр окружности. ∠A1BO=∠C1BO, BO - биссектриса ∠ABC.
Биссектриса при вершине треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам. AO/OC = AB/BC = 4/5
∠A1BO=∠C1BO, BO - биссектриса ∠ABC.
Биссектриса при вершине треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам.
AO/OC = AB/BC = 4/5
AO*OC= 4/9 *AC *5/9 *AC = 20*36/81 = 80/9 = 8 8/9 (~8,89)