Объяснение: обозначим вершины пирамиды АВСД с высотой КО и диагоналями ВД и АС. Одна диагональ делит параллелограмм на 2 равных треугольника. Пусть ВД=6см. Рассмотрим полученный ∆ВСД. В нём известны 3 стороны и мы можем найти его площадь по формуле: S=√((p-a)(p-b)(p-c)), где а сторона треугольника а р-полупериметр:
Р=3+7+6=16см; р/2=16/2=8см
S=√8((8-7)(8-6)(8-3))=√(8×1×2×5)=
=√80=8√5см²
Так как таких треугольников 2, то площадь параллелограмма=8√5×2=16√5см²
Теперь найдём объем пирамиды зная площадь основания и высоту по формуле: V=⅓×Sосн×КО=
Два конуса (один внутри другого) построены на одном основании. Углы между образующими и высотой конуса равны 300 и 600 . Разность высот равна
12√3. Площадь сферы, описанной около большого конуса, равна πk, найдите k.
Объяснение:
Рассмотрим сечение данной комбинации тел , проходящее через высоты конусов. Центр О ,описанной окружности около большего ΔАВМ, лежит на серединном перпендикуляре, который совпадает с высотой МК, т.к. МА=МВ образующие конуса.
Вершина О малого конуса лежит на высоте большого конуса .
ΔОАВ-равнобедренный,т.к. ОА=ОВ образующие малого конуса ⇒ОА=ОВ=R и ОА=ОВ=ОМ=R.
По условию задачи S(сферы )=πк , ∠АМК=30°,∠АОК=60°, H-h=12√3 , H-высота большого конуса , h-высота малого конуса
Т.к. H-h=12√3 , то МО= 12√3 ⇒ R =12√3.
S(сферы )=4πR² и S(сферы )=πк приравняем правые части:
ответ: V=64√5см³
Объяснение: обозначим вершины пирамиды АВСД с высотой КО и диагоналями ВД и АС. Одна диагональ делит параллелограмм на 2 равных треугольника. Пусть ВД=6см. Рассмотрим полученный ∆ВСД. В нём известны 3 стороны и мы можем найти его площадь по формуле: S=√((p-a)(p-b)(p-c)), где а сторона треугольника а р-полупериметр:
Р=3+7+6=16см; р/2=16/2=8см
S=√8((8-7)(8-6)(8-3))=√(8×1×2×5)=
=√80=8√5см²
Так как таких треугольников 2, то площадь параллелограмма=8√5×2=16√5см²
Теперь найдём объем пирамиды зная площадь основания и высоту по формуле: V=⅓×Sосн×КО=
=⅓×16√5×4=64√5/3см³
Два конуса (один внутри другого) построены на одном основании. Углы между образующими и высотой конуса равны 300 и 600 . Разность высот равна
12√3. Площадь сферы, описанной около большого конуса, равна πk, найдите k.
Объяснение:
Рассмотрим сечение данной комбинации тел , проходящее через высоты конусов. Центр О ,описанной окружности около большего ΔАВМ, лежит на серединном перпендикуляре, который совпадает с высотой МК, т.к. МА=МВ образующие конуса.
Вершина О малого конуса лежит на высоте большого конуса .
ΔОАВ-равнобедренный,т.к. ОА=ОВ образующие малого конуса ⇒ОА=ОВ=R и ОА=ОВ=ОМ=R.
По условию задачи S(сферы )=πк , ∠АМК=30°,∠АОК=60°, H-h=12√3 , H-высота большого конуса , h-высота малого конуса
Т.к. H-h=12√3 , то МО= 12√3 ⇒ R =12√3.
S(сферы )=4πR² и S(сферы )=πк приравняем правые части:
4π(12√3)²=πк
к =4*144*3, к=12³ или к=1728