Втреугольнике abc стороны ac и ab равны. из точки f, лежащей на стороне ac на сторону ab опущен перпендикуляр fk, так что fk=cf. найдите угол kcb. , 15
Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
Объяснение:
S(пол) = S(осн)+S(бок) .
Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
Окончательно :
S(пол) = b²sinβ+ b²sinβ/sinα =b²sinβ(1+ 1/sinα)=b²(sinβ/sinα)*(1+ sinα).
ответ: b²(sinβ/sinα)*(1+ sinα).
1+sinα = 1+cos(π/2 -α) =2cos²(π/4 -α/2).
1+sinα =sinπ/2 +sinα =...
списано вот здесь
И. п семь тысяч семьсот семьдесят седьмая страница
Р. п семь тысяч семьсот семьдесят седьмой страницы
Д. п семь тысяч семьсот семьдесят седьмой странице
В. п семь тысяч семьсот семьдесят седьмую страницу
Т. п семь тысяч семьсот семьдесят седьмой страницей
П. п о семь тысяч семьсот семьдесят седьмой странице
И. п. пять десятых грамма
р. п пять десятых грамма
Д. п пять десятому грамму
в. п пять десятых грамма
т. п пять десятыми граммами
п. п о пять десятых грамма
и. п. сто друзей
р. п ста друзей
Д. п ста друзьям
в. п сто друзей
т. п ста друзьями
п. п о ста друзьях
и. п. сорок восемь городов
р. п сорока восьми городов
Д. п. сорока восьми городам
в. п. сорок восемь городов
т. п. сорока восьми городами
п. п о сорока восьми городов