6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
По теореме косинусов:
с² = a² + b² - 2ab·cos∠C = 4 + 16 - 2 · 2 · 4 · cos∠C
25 = 20 - 16cos∠C
16cos∠C = - 5
cos∠C = - 5/16 = - 0,3125
Так как косинус угла С отрицательный, то угол тупой. По таблице Брадиса находим, что если cosα = 0,3125, то α ≈ 72°, тогда
∠C ≈ 180° - 72° ≈ 108°
По теореме косинусов:
a² = b² + c² - 2bc·cos∠A
4 = 14 + 25 - 2 · 4 · 5 · cos∠A
40cos∠A = 35
cos∠A = 35/40 = 7/8 = 0,875
∠А ≈ 29°
Сумма углов треугольника равна 180°, поэтому
∠В = 180° - (∠А + ∠С) ≈ 180° - (29° + 108°) ≈ 43°
Площадь треугольника найдем по формуле:
S = 1/2 ac·sin∠B
sin∠B ≈ 0,682
S ≈ 1/2 · 2 · 5 · 0,682 ≈ 3,41 см²