Основная формулировка содержит алгебраические действия — в прямоугольном треугольнике, длины катетов которого равны {\displaystyle a}a и {\displaystyle b}b, а длина гипотенузы — {\displaystyle c}c, выполнено соотношение:
Возможна и эквивалентная геометрическая формулировка, прибегающая к понятию площади фигуры: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. В таком виде теорема сформулирована в Началах Евклида.
Обратная теорема Пифагора — утверждение о прямоугольности всякого треугольника, длины сторон которого связаны соотношением {\displaystyle a^{2}+b^{2}=c^{2}}a^{2}+b^{2}=c^{2}. Как следствие, для всякой тройки положительных чисел {\displaystyle a}a, {\displaystyle b}b и {\displaystyle c}c, такой, что {\displaystyle a^{2}+b^{2}=c^{2}}a^{2}+b^{2}=c^{2}, существует прямоугольный треугольник с катетами {\displaystyle a}a и {\displaystyle b}b и гипотенузой {\displaystyle c}c.
Надо перевести прямую в положение, параллельное плоскости проекции. Для этого используется метод замены плоскостей, который не предполагает перемещение фигур в пространстве.
Параллельно проекции l введена дополнительная фронтальная плоскость П4. В новой системе (П1, П4) точки находятся на том же удалении от оси X1, что и на фронтальной проекции.
Далее опускаем перпендикуляр из А1 на прямую l1, поскольку прямой угол проецируется на плоскость П4 в натуральную величину. По линии связи определяем положение точки N' и проводим проекцию A'N' отрезка AN.
На заключительном этапе определяем величину отрезка AN по его проекции на плоскости П4 и dy. Для этого строим прямоугольный треугольник, у которого катет равен разности dy удаления точек A и N от оси X1. Длина гипотенузы треугольника соответствует искомому расстоянию от A до l.
Объяснение:
Основная формулировка содержит алгебраические действия — в прямоугольном треугольнике, длины катетов которого равны {\displaystyle a}a и {\displaystyle b}b, а длина гипотенузы — {\displaystyle c}c, выполнено соотношение:
{\displaystyle a^{2}+b^{2}=c^{2}}a^{2}+b^{2}=c^{2}.
Возможна и эквивалентная геометрическая формулировка, прибегающая к понятию площади фигуры: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. В таком виде теорема сформулирована в Началах Евклида.
Обратная теорема Пифагора — утверждение о прямоугольности всякого треугольника, длины сторон которого связаны соотношением {\displaystyle a^{2}+b^{2}=c^{2}}a^{2}+b^{2}=c^{2}. Как следствие, для всякой тройки положительных чисел {\displaystyle a}a, {\displaystyle b}b и {\displaystyle c}c, такой, что {\displaystyle a^{2}+b^{2}=c^{2}}a^{2}+b^{2}=c^{2}, существует прямоугольный треугольник с катетами {\displaystyle a}a и {\displaystyle b}b и гипотенузой {\displaystyle c}c.
Надо перевести прямую в положение, параллельное плоскости проекции. Для этого используется метод замены плоскостей, который не предполагает перемещение фигур в пространстве.
Параллельно проекции l введена дополнительная фронтальная плоскость П4. В новой системе (П1, П4) точки находятся на том же удалении от оси X1, что и на фронтальной проекции.
Далее опускаем перпендикуляр из А1 на прямую l1, поскольку прямой угол проецируется на плоскость П4 в натуральную величину. По линии связи определяем положение точки N' и проводим проекцию A'N' отрезка AN.
На заключительном этапе определяем величину отрезка AN по его проекции на плоскости П4 и dy. Для этого строим прямоугольный треугольник, у которого катет равен разности dy удаления точек A и N от оси X1. Длина гипотенузы треугольника соответствует искомому расстоянию от A до l.