СЕ = 1см
S=10см^2
Объяснение:
АВCD — квадрат,
то АВ = ВС = CD = AD = 4 см.
1)Рассмотрим треугольник АDE: EA = 5 см.,
AD = 4 см,
угол АDE = 90 градусов.
Тогда по т. Пифагора находим сторону DE: DE^2 = AE^2 — AD^2 = 25 — 16 = 9,
т. е. DE = 3 см.
Так как сторона СD = DE + EC = 4, следовательно СЕ = СD - DE = 4 - 3 = 1 см.
2) Сначала найдём площадь квадрата АВСD: S (ABCD) = CD^2 = 4 * 4 = 16 см^2.
Теперь находим площадь треугольника ADE: S(ADE) = 1/2 * AD * DE = 1/2 * 4 * 3 = 6 cм^2. Теперь так как S(ABCD) = S(ADE) + S(ABCE),
следовательно S(ABCE) = S(ABCD) — S(ADE) = 16 — 6 = 10 см^2.
ответ: СЕ = 1 см; S(ABCE) = 10 см^2.
СЕ = 1см
S=10см^2
Объяснение:
АВCD — квадрат,
то АВ = ВС = CD = AD = 4 см.
1)Рассмотрим треугольник АDE: EA = 5 см.,
AD = 4 см,
угол АDE = 90 градусов.
Тогда по т. Пифагора находим сторону DE: DE^2 = AE^2 — AD^2 = 25 — 16 = 9,
т. е. DE = 3 см.
Так как сторона СD = DE + EC = 4, следовательно СЕ = СD - DE = 4 - 3 = 1 см.
2) Сначала найдём площадь квадрата АВСD: S (ABCD) = CD^2 = 4 * 4 = 16 см^2.
Теперь находим площадь треугольника ADE: S(ADE) = 1/2 * AD * DE = 1/2 * 4 * 3 = 6 cм^2. Теперь так как S(ABCD) = S(ADE) + S(ABCE),
следовательно S(ABCE) = S(ABCD) — S(ADE) = 16 — 6 = 10 см^2.
ответ: СЕ = 1 см; S(ABCE) = 10 см^2.
Решение:
ВD- высота, медиана и биссектрисса равнобедренного треугольника ∆АВС;
АD=DC;
DC=AC/2=16/2=8ед.
∆ВDC- прямоугольный треугольник
Теорема Пифагора
ВD=√(BC²-DC²)=√(17²-8²)=
=√((17+8)(17-8))=√(25*9)=5*3=15ед.
ответ: х=15ед.
№6)
RN=NM=6ед ∆RNM-равносторонний;
RK- высота, медиана и биссектрисса.
NK=KM
NK=NM/2=6/2=3
∆RKN- прямоугольный треугольник
По теореме Пифагора
RK=√(RN²-NK²)=√(6²-3²)=
=√((6-3)(6+3))=√(3*9)=3√3ед.
ответ: х=3√3ед.
№7)
РТ=PR/2=x/2.
По теореме Пифагора
RP²-PT²=RT²
Составляем уравнение.
х²-(х/2)²=8²
х²-х²/4=64. |×4.
4х²-х²=256
3х²=256. |÷3
х²=256/3
х=√(256/3)
х=16/√3
х=16√3/3 ед
ответ: х=16√3/3 ед