В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
robdars
robdars
08.04.2021 01:45 •  Геометрия

Втреугольнике abc угол авс 70 угол асв=85 в треугольнике мок угол еок=25 угол оек=85 ое =4 вс авбольше вс найдите а)ок/ав. б)са/ек в) площадь еок/иавс.

Показать ответ
Ответ:
aidaXdXd
aidaXdXd
26.04.2022 17:18
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
  
Полная площадь призмы равна сумме площадей двух оснований и   площади боковой поверхности.  
 Пусть ребро призмы равно а.   
 Грани - квадраты, их 3.   
 S бок=3а²   
S двух осн.=( 2 а²√3):4=( а²√3):2 
 По условию  
 3а²+(а²√3):2=8+16√3   
Умножим  обе стороны уравнения на 2 и вынесем а² за скобки:     а²(6+√3)=16+32√3)=16(1+2√3)    
  а²=16(1+2√3):(6+√3)   
Подставим значение  а² в формулу площади правильного треугольника:   
 S=[16*(1+2√3):(6+√3)]*√3:4  
 S=4(√3+6):(6+√3)=4 (ед. площади)
 
 Думаю, решение понятно.  Перенести решение на листок для Вас не составит труда.
0,0(0 оценок)
Ответ:
deniskalubit
deniskalubit
24.08.2020 00:38
Что-то не так. Во-первых, опечатка - не призма, а пирамида.
Во-вторых, она должна быть 4-угольной, потому что 4 угла куба не могут лежать на трех апофемах треугольной пирамиды.
Значит, считаем, что это 4-угольная правильная пирамида.
В основании квадрат. В пирамиду вписан куб так, что 4 нижних вершины лежат на основании, а 4 верхних на апофемах (высоты боковых граней).
Я сделал рисунок. Там много линий, и чтобы разобраться, я нарисовал апофемы красным, куб синим, а высоту пирамиды жирным черным.
Нижние вершины куба лежат на средних линиях основания KM и LN.
Справа я нарисовал сечение пирамиды плоскостью SLN.
В сечении будет равнобедренный треугольник, а в него вписан прямоугольник PRR1P1, у которого высота PP1 = RR1 = x - стороне куба,
а основание PR = P1R1 = x√2 - диагонали грани куба.
Теперь решаем задачу.
Сторона основания пирамиды а, диагональ AC = BD = a√2,
OC = a√2/2, угол наклона бокового ребра α.
В треугольнике AOS катет OS=H=AO*tg α=a*√2/2*tg α.
В треугольнике LOS катет OL = a/2, по теореме Пифагора
SL^2 = OL^2 + OS^2 = a^2/4 + a^2/2*tg α = a^2/4*(1 + 2tg α)
SL = a/2*√(1 + 2tg α)
Угол наклона апофемы к плоскости основания OLS = β:
tg β = OS/OL = (a*√2/2*tg α) : (a/2) = √2*tg α
В треугольнике RR1L катет
RL = RR1/tg β = x/(√2*tg α) = x√2/(2tg α)
Но мы знаем, что PR = x√2 и NP = RL. Получаем
NL = NP + PR + RL
a = 2*x√2/(2tg α) + x√2 = x√2/tg α + x√2
x = \frac{a}{ \sqrt{2}/tg \alpha + \sqrt{2} } = \frac{a*tg \alpha }{ \sqrt{2}*(tg \alpha +1) }
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота