Втреугольнике abc угол c=100°, ac=3 см, bc=4 см. постройте треугольник abc и его образ при осевой симметрии относительно прямой, содержащей его: a) медиану am; б) высоту ah.
В рисунок, данный в приложении, внесены исправления, чтобы он соответствовал данным в условии отношениям отрезков стороны АВ.
По условию АВ=6. АМ:МВ=1:2 ⇒ АВ=АМ+МВ=3 части. АМ=АВ:3=2 см, МВ=6-2=4 см. МК:КВ=1:3 ⇒ МВ=4 части, МК=4:4=1 см, КВ=4-1=3 см.
В условии не указаны равные стороны, поэтому возможны варианты решения.
а)АВ=АС, ⇒ ∠С=∠В=70° Из суммы углов треугольника ∠А=180°-2•70°=40°. По условию МР║ВС, КН║МР, АВ при них секущая. Поэтому ∠АКН=∠В=70° как соответственные. Аналогично ∠КНА=70° как соответственный углу С. Треугольник АКН~∆АВС, АН=АК, НС=КВ=4 см.
б) АВ=ВС. ∠А=∠С. Отрезки АВ будут иметь ту же величину, что в первом варианте. Но величина углов будет другой. Из суммы углов треугольника: ∠А= ∠С=(180*-70°):2=55°, ∠АКН= ∠В=70°, ∠КНА=∠С=55°. Для нахождения длины НС понадобится дополнительно провести НЕ параллельно |АВ. НЕ=КВ. По теореме синусов НЕ:sin55°=HC:sin70° ⇒ 4:0,8192=HC:0,9397, откуда получим НС≈ 4,58 см.
в) АС=ВС. Углы находятся по тому же принципу, и для нахождения НС также требуется применение т.синусов
Дан треугольник с ВЕРШИНАМИ А(-3,0), В(-1,6), С(3,2)
1)уравнение стороны АС : (х + 3)/6 = у/2 это каноническое уравнение.
Приведём к общему знаменателю и сократим на 2:
х -3у + 3 = 0 это общее уравнение,
у = (1/3)х + 1 это уравнение с угловым коэффициентом.
2) Уравнение высоты АК .
Находим сначала уравнение стороны ВС: (х + 1)/4 = (у - 6)/(-4).
Отсюда имеем у = -х + 5. к = -1.
Для высоты АК к = -1/(кВС) = -1/-1 = 1. Уравнение у = х + в. Для опредения в подставим координаты точки А: 0 = 1*(-3) + в. Отсюда в = 3.
Уравнение АК: у = х + 3.
3) Длина средней линии МР/ВС . ВС = √(4² + (-4)²) = √32 = 4√2.
Тогда средняя линия МР = (1/2)ВС = 2√2.
4) Угол МР^МВ . Находим уравнение стороны АВ: (х + 3)/2 = у/6.
Или у = 3х +9 Здесь е = 3.
Тангенс угла В = (к(ВС) - к(АВ))/(1 - (к(ВС)*к(АВ))) = (-1-3)/(1-1*3) = -4/-1 = 2.
Угол В = arc tg 2 = 1,107149 радиан = 63,43495°.
Угол МР^МВ как односторонний равен 180 - В = 180 - 63,43495 = 116,56505 °.
5) Точка пересечения высот треугольника. Надо о=найти уравнение высоты ВН. к(ВН) = -1/к(АС) = -1/(1/3) = -3.
ВН: у = -3х + в. Подставим координаты точки В: 6 = -3*(-1) + в. в = 6 - 3 = 3. Уравнение ВН: у = -3х + 3.
Находим точку пересечения: -3х + 3 = х + 3 4х = 0 х = 0. у = 3.
Смотри
В рисунок, данный в приложении, внесены исправления, чтобы он соответствовал данным в условии отношениям отрезков стороны АВ.
По условию АВ=6. АМ:МВ=1:2 ⇒ АВ=АМ+МВ=3 части. АМ=АВ:3=2 см, МВ=6-2=4 см. МК:КВ=1:3 ⇒ МВ=4 части, МК=4:4=1 см, КВ=4-1=3 см.
В условии не указаны равные стороны, поэтому возможны варианты решения.
а)АВ=АС, ⇒ ∠С=∠В=70° Из суммы углов треугольника ∠А=180°-2•70°=40°. По условию МР║ВС, КН║МР, АВ при них секущая. Поэтому ∠АКН=∠В=70° как соответственные. Аналогично ∠КНА=70° как соответственный углу С. Треугольник АКН~∆АВС, АН=АК, НС=КВ=4 см.
б) АВ=ВС. ∠А=∠С. Отрезки АВ будут иметь ту же величину, что в первом варианте. Но величина углов будет другой. Из суммы углов треугольника: ∠А= ∠С=(180*-70°):2=55°, ∠АКН= ∠В=70°, ∠КНА=∠С=55°. Для нахождения длины НС понадобится дополнительно провести НЕ параллельно |АВ. НЕ=КВ. По теореме синусов НЕ:sin55°=HC:sin70° ⇒ 4:0,8192=HC:0,9397, откуда получим НС≈ 4,58 см.
в) АС=ВС. Углы находятся по тому же принципу, и для нахождения НС также требуется применение т.синусов