Доказательство.ΔАОС=ΔВОD по двум сторонам и углу между ними : АО=ОВ и СО=ОD как радиусы одной окружности, ∠АОС=∠ВОD как вертикальные .
2) Дано окр. О(r) , r=9 см , АВ, АС-касательные, ∠ВАС=120°.
Найти: АВ , АС.
Решение. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания ⇒∠ОВА=∠ОСА=90°. Проведем АО.
Отрезки касательных к окружности, проведенных из одной точки, равны , т.е АВ=АС , и составляют равные углы с прямой, проходящей через эту точку и центр окружности, т.е. ∠ВАО=∠САО=120°:2=60°.
ΔВАО : ∠ВОА=90°-60°=30°. Пусть АВ=х , по св. угла 30° ⇒ОА=2х. По т. Пифагора (2х)²=х²+9² или 3х²=81 или х²=27 или х=3√3. АВ=АС=3√3 см
1.Градусная мера дуги, на которую опирается центральный угол, равна 80 °. Определить градусную меру этого угл
а) 120° б) 80° в) 40°г) 50°
Центральный угол равен градусной мере дуги, на которую опирается. Поэтому ответ б) 80 градусов
2.Градусная мера центрального угла равна 120 °. Определить градусную меру дуги, на которую он опирается.
Из аналогичных соображений ответ г) 120 градусов.
а) 160° б) 90° в) 60°г) 120°
3.Градусная мера вписанного угла равна 140 °. Определить градусную меру дуги, на которую он опирается.
Вписанный угол равен половине градусной меры дуги на которую опирается. Поэтому градусная мера дуги равна 140*2 = 280 градусов. ответ в) 280 градусов.
а) 100° б) 70° в) 280°г) 140°
4.Градусная мера дуги, на которую опирается вписанный угол, равна 90°.Определить градусную меру этого вписанного угла.
Из аналогичных соображений, вписанный угол равен половине градусной меры дуги, на которую опирается. Следовательно, угол равен 90/2 = 45 градусов. ответ б) 45 градусов.
а) 100° б) 45° в) 180°г) 90°
5.Определить градусную меру угла, вписанного в окружность, если соответствующий ему центральный угол равен 126 ° .
Центральный угол равен градусной мере дуги, на которую опирается, а вписанный угол половине дуги. Следовательно, вписанный угол равен половине центрального угла, опирающегося на ту же дугу. ответ а) 63 градуса.
а) 63° б) 252° в) 180°г) 126°
6.Определить градусную меру центрального угла окружности, если градусная мера соответствующего ему вписанного угла равна 40 ° .
Из аналогичных рассуждений, центральный угол в 2 раза больше вписанного угла, опирающегося на ту же дугу. ответ г) 80 градусов.
Объяснение:
1)Дано окр. О(r) , АВ, СD-диаметры .
Доказать АС=BD
Доказательство.ΔАОС=ΔВОD по двум сторонам и углу между ними : АО=ОВ и СО=ОD как радиусы одной окружности, ∠АОС=∠ВОD как вертикальные .
2) Дано окр. О(r) , r=9 см , АВ, АС-касательные, ∠ВАС=120°.
Найти: АВ , АС.
Решение. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания ⇒∠ОВА=∠ОСА=90°. Проведем АО.
Отрезки касательных к окружности, проведенных из одной точки, равны , т.е АВ=АС , и составляют равные углы с прямой, проходящей через эту точку и центр окружности, т.е. ∠ВАО=∠САО=120°:2=60°.
ΔВАО : ∠ВОА=90°-60°=30°. Пусть АВ=х , по св. угла 30° ⇒ОА=2х. По т. Пифагора (2х)²=х²+9² или 3х²=81 или х²=27 или х=3√3. АВ=АС=3√3 см
Объяснение:
1.Градусная мера дуги, на которую опирается центральный угол, равна 80 °. Определить градусную меру этого угл
а) 120° б) 80° в) 40°г) 50°
Центральный угол равен градусной мере дуги, на которую опирается. Поэтому ответ б) 80 градусов
2.Градусная мера центрального угла равна 120 °. Определить градусную меру дуги, на которую он опирается.
Из аналогичных соображений ответ г) 120 градусов.
а) 160° б) 90° в) 60°г) 120°
3.Градусная мера вписанного угла равна 140 °. Определить градусную меру дуги, на которую он опирается.
Вписанный угол равен половине градусной меры дуги на которую опирается. Поэтому градусная мера дуги равна 140*2 = 280 градусов. ответ в) 280 градусов.
а) 100° б) 70° в) 280°г) 140°
4.Градусная мера дуги, на которую опирается вписанный угол, равна 90°.Определить градусную меру этого вписанного угла.
Из аналогичных соображений, вписанный угол равен половине градусной меры дуги, на которую опирается. Следовательно, угол равен 90/2 = 45 градусов. ответ б) 45 градусов.
а) 100° б) 45° в) 180°г) 90°
5.Определить градусную меру угла, вписанного в окружность, если соответствующий ему центральный угол равен 126 ° .
Центральный угол равен градусной мере дуги, на которую опирается, а вписанный угол половине дуги. Следовательно, вписанный угол равен половине центрального угла, опирающегося на ту же дугу. ответ а) 63 градуса.
а) 63° б) 252° в) 180°г) 126°
6.Определить градусную меру центрального угла окружности, если градусная мера соответствующего ему вписанного угла равна 40 ° .
Из аналогичных рассуждений, центральный угол в 2 раза больше вписанного угла, опирающегося на ту же дугу. ответ г) 80 градусов.
а) 40° б) 20° в) 140°г) 80°