Прямая SB перпендикулярна двум пересекающимся прямым в плоскости ABC, следовательно перпендикулярна плоскости и любой прямой в этой плоскости. SB⊥BD. BD=4√2 (диагональ квадрата). По теореме Пифагора:
SD= √(SB^2 +BD^2) =√(25+32) =√57
SB⊥BA, BA - проекция SA. Теорема о трех перпендикулярах: если прямая (AD), проведенная на плоскости через основание наклонной (SA), перпендикулярна ее проекции (AD⊥BA), то она перпендикулярна и самой наклонной (AD⊥SA). △SAD - прямоугольный.
1 - верно, так как центром окружности, вписанной в любой треугольник, является точка пересечения биссектрис его внутренних углов, а в правильном треугольнике его биссектрисы являются и высотами (серединные перпендикуляры) и медианами. 2 верно, так как в любой треугольник можно вписать окружность и при том только одну. 4 верно, так как центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к его сторонам, а в правильном треугольнике его высоты являются серединными перпендикулярами (так как являются и медианами). 3 -неверно, так как центр окружности, описанной около прямоугольного треугольника, находится на гипотенузе этого треугольника. 4- верно, так как центром окружности, описанной около любого треугольника, является точка пересечения серединных перпендикуляров, а в правильном треугольнике высоты являются срединными перпендикулярами. 5- неверно, так как квадрат любой стороны треугольника равен сумме квадратов двух других сторон без УДВОЕННОГО произведения этих сторон на косинус угла между ними.
Прямая SB перпендикулярна двум пересекающимся прямым в плоскости ABC, следовательно перпендикулярна плоскости и любой прямой в этой плоскости. SB⊥BD. BD=4√2 (диагональ квадрата). По теореме Пифагора:
SD= √(SB^2 +BD^2) =√(25+32) =√57
SB⊥BA, BA - проекция SA. Теорема о трех перпендикулярах: если прямая (AD), проведенная на плоскости через основание наклонной (SA), перпендикулярна ее проекции (AD⊥BA), то она перпендикулярна и самой наклонной (AD⊥SA). △SAD - прямоугольный.
Проверка:
SA= √(SB^2 +AB^2) =√(25+16) =√41
57=41+16
2 верно, так как в любой треугольник можно вписать окружность и при том только одну.
4 верно, так как центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к его сторонам, а в правильном треугольнике его высоты являются серединными перпендикулярами (так как являются и медианами).
3 -неверно, так как центр окружности, описанной около прямоугольного треугольника, находится на гипотенузе этого треугольника.
4- верно, так как центром окружности, описанной около любого треугольника, является точка пересечения серединных перпендикуляров, а в правильном треугольнике высоты являются срединными перпендикулярами.
5- неверно, так как квадрат любой стороны треугольника равен сумме квадратов двух других сторон без УДВОЕННОГО произведения этих сторон на косинус угла между ними.