В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
RokiFoki
RokiFoki
28.01.2020 01:44 •  Геометрия

Втреугольнике авс проведены биссектрисы аа1 и сс1. к и м – основания перпендикуляров, опущенных из точки в на прямые аа1 и сс1. а) докажите, параллельность прямых мk и ас. б) найдите площадь треугольника квм, если известно, что ас=10, вс=6, ав=8. ответ: 2,4.

Показать ответ
Ответ:
арина256545
арина256545
24.07.2020 14:49
Продлим BK и BM до пересечения c AC в точках P и Q соответственно. Тогда AK - биссектриса и высота треугольника ABP, а значит ABP - равнобедренный (AB=AP) и AK - его медиана, т.е.BK=PK. Аналогично, для треугольника CBQ, CQ=BC и BM=QM, т.к. CM его высота и биссектриса. Таким образом, MK - средняя линия треугольника QBP, т.е. MK||AC, что доказывает пункт а).
CP=AC-AP=AC-AB=10-8=2
AQ=AC-CQ=AC-BC=10-6=4
Значит, QP=AC-CP-AQ=10-2-4=4.
Итак, если обозначить через h высоту треугольника ABC, проведенную к AC, то S(KBM)=MK*(h/2)/2=(QP/2)*h/4=QP*h/8. Т.к. ABC - прямоугольный (6^2+8^2=10^2), то h=6*8/10=4,8, т.е. S(KBM)=4*4,8/8=2,4.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота