Треугольник ABC с прямым углом A. Биссектриса BL делит сторону AC на отрезки AL=2.4 см и LC=2.6 см. Это так, потому что есть теорема, что биссектриса делит сторону на отрезки, отношение которых прямопропорционально отношениям длин сторон. Т.е. в данном случае BC/AB=LC/AC. А т.к. гипотенуза больше катета, то именно LC=2.6 см. Значит, BC/AB=2.6/2.4=13/12. Пусть AB=x, тогда BC=13/12x. По теореме Пифагора: BC^2=AC^2+AB^2=x^2 (умножить на) 169/144=x^2+(2.4+2.6)^2=x^2 (умножить на) 169/144+25. Решаем уравнение и получаем, что x^2=144. Значит, x=12=AB, значит, BC=13. Считаем периметр - AB+BC+CA=12+13+5=30см.
Радиус вписанной окружности равен половине высоты этой трапеции (высота равна диаметру. )
В трапецию можно вписать окружность, если суммы ее противоположных сторон равны.
8+18=26 - сумма боковых сторон
26:2=13 - боковая сторона.
Опустим из тупого угла высоту на большее основание.
Получим прямоугольный треугольник с гипотенузой 13, катетом, равным полуразности оснований и равным (18-8):2, и вторым катетом - высотой трапеции.
По теореме Пифагора диаметр окружности равен
√(13²-5²)=12см
Радиус равен половине диаметра
12:2=6 см
ответ: радиус вписанной окружности в трапцию равен 6 см