Втреугольнике авс точка d лежит на стороне вс, точка к на стороне ас. отрезки аd и вк пересекаются в точке о. известно, что ао : оd = 3 : 2 и во : ок = 5 : 3. найти отношения ак : кс и вd : dс.
Если знать теорему Менелая, то из треугольника ВКС : ВО/ОК *АК/АС * СД/ДВ = 1, отсюдаЕсли знать теорему Менелая, то из треугольника ВКС : ВО/ОК *АК/АС * СД/ДВ = 1, отсюда АК/АС * СД/ДВ=3/5, а из треугольника АДС мы получаем ДВ/ВС*СК/КА=2/3, теперь возьмем наши отрезки за буквы АК - а, КС - в, СД - д, ВД - с. Мы имеем систему а/(а+в)*д/с=3/5 и с/(с+д)*в/а=2/3 переворачиваем числители и знаменатели обеих частей двух равенств и делаем очевидную замену в/а=х и д/с=у. А это и есть искомые отношения, решаем систему получаем ответ 9:16 и 3:5