Пусть стороны АВ и ВС треугольника соответственно равны 1 и √15 а его медиана ВМ равна 2.На продолжении медианы BM за точку M отложим отрезок MD, равный BM. Из равенства треугольников ABM и CDM (по двум сторонам и углу между ними) следует равенство площадей треугольников ABC и BCD. В треугольнике BCD известно, что ВС=√15; ВD=2ВМ = 2*2=4 ; DС=АВ=1 по формуле герона р=(√15+4+1)/2=(√15+5)/2 s=√(p(p-BC)(p-BD)(p-DC))=√((√15+5)/2)((√15+5)/2-√15)((√15+5)/2-4)((√15+5)/2-1)= √((√15+5)/2)((-√15+5)/2)((√15-3)/2)((√15+3)/2)=√(((√15+5)(5-√15)(√15-3)(√15+3))/16) =√(((25-15)(15-9))/16)=√60/√16=2√15/4 2*3.87/4=1.94
Пирамидой называется многогранник, поверхность которого состоит из многоугольника, называемого основанием пирамиды, и треугольников с общей вершиной, называемых боковыми гранями пирамиды. Пирамида называется n-угольной, если ее основанием является n-угольник.
Пирамида называется правильной, если её основание — правильный многоугольник и все боковые ребра равны.
Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.
Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию. Усечённая пирамида называется правильной, если пирамида, из которой она была получена — правильная.
Тетраэдром называется треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды. Кроме того, существует большое различие в
ВС=√15; ВD=2ВМ = 2*2=4 ; DС=АВ=1
по формуле герона
р=(√15+4+1)/2=(√15+5)/2
s=√(p(p-BC)(p-BD)(p-DC))=√((√15+5)/2)((√15+5)/2-√15)((√15+5)/2-4)((√15+5)/2-1)=
√((√15+5)/2)((-√15+5)/2)((√15-3)/2)((√15+3)/2)=√(((√15+5)(5-√15)(√15-3)(√15+3))/16)
=√(((25-15)(15-9))/16)=√60/√16=2√15/4
2*3.87/4=1.94
Пирамида
Пирамидой называется многогранник, поверхность которого состоит из многоугольника, называемого основанием пирамиды, и треугольников с общей вершиной, называемых боковыми гранями пирамиды. Пирамида называется n-угольной, если ее основанием является n-угольник.
Пирамида называется правильной, если её основание — правильный многоугольник и все боковые ребра равны.
Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.
Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию. Усечённая пирамида называется правильной, если пирамида, из которой она была получена — правильная.
Тетраэдром называется треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды. Кроме того, существует большое различие в
Объяснение: