1) AB = BC = CD = AD, ВО = ½BD, BO = 12 і AO = ½AC AO = 5 (за властивостями ромба), по теоремі Піфагора AB² = BO² + AO², АВ² = 12² + 5², AB² = 169, AB = 13;
2) <A = <B = <C = <D, <ABO = <CBO, <BAO = <DAO (за властивостями ромба), sin ABO = AO / AB,
В условии, вероятно, неточность, потому что параллелограмм - это четырехугольник, у которого противоположные стороны параллельны. Это определение, оно не доказывается.
Докажем, что в параллелограмме противоположные стороны попарно равны.
Дано: ABCD - параллелограмм. Доказать: АВ = CD, AD = BC. Доказательство: ∠DAC = ∠BCA как накрест лежащие углы при пересечении AD ║ BC секущей АС. ∠ВАС = ∠DCA как накрест лежащие при пересечении АВ ║ CD секущей АС. АС - общая сторона для треугольников АВС и CDA, значит ΔАВС = ΔCDA по стороне и двум прилежащим к ней углам. В равных треугольниках напротив равных углов лежат равные стороны, значит АВ = CD, AD = BC. Что и требовалось доказать.
Дано: ABCD - ромб, BD = 24см, AC = 10см;
Знайти: <A, <B, <C, <D;
Рішення.
1) AB = BC = CD = AD, ВО = ½BD, BO = 12 і AO = ½AC AO = 5 (за властивостями ромба), по теоремі Піфагора AB² = BO² + AO², АВ² = 12² + 5², AB² = 169, AB = 13;
2) <A = <B = <C = <D, <ABO = <CBO, <BAO = <DAO (за властивостями ромба), sin ABO = AO / AB,
sin = 5/13, sin ABO≈0.38 <ABO≈68 °, <BAO = 180 ° - <BOA- <ABO, <BAO = 180 ° -90 ° -68 ° = 22 °,
3) <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °
Відповідь: <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °.
Докажем, что в параллелограмме противоположные стороны попарно равны.
Дано: ABCD - параллелограмм.
Доказать: АВ = CD, AD = BC.
Доказательство:
∠DAC = ∠BCA как накрест лежащие углы при пересечении AD ║ BC секущей АС.
∠ВАС = ∠DCA как накрест лежащие при пересечении АВ ║ CD секущей АС.
АС - общая сторона для треугольников АВС и CDA, значит
ΔАВС = ΔCDA по стороне и двум прилежащим к ней углам.
В равных треугольниках напротив равных углов лежат равные стороны, значит АВ = CD, AD = BC.
Что и требовалось доказать.