ΔETS и ΔFTS- прямоугольные, можно было бы доказать, что они равны по катету и общей гипотенузе, а из равенства треугольников вытекало бы равенство углов.
∠ETS и ∠FTS, тогда бы
∠ETF=2*34°=68°, т.е было бы доказано, что TS- биссектриса. А так... маловато данных для определения этого угла. Там в Вашей картинке написано черным продедены.. .возможно, конец этого предложения перпендикуляры.. проведены.. или что?)
ES=SF=> угол ETS=угол STF = 34°
угол ETF = угол ETS + угол STF = 34°+34°=68°
так как ES=SF /по условию/
TS-общая, то если бы еще добавить, что
ΔETS и ΔFTS- прямоугольные, можно было бы доказать, что они равны по катету и общей гипотенузе, а из равенства треугольников вытекало бы равенство углов.
∠ETS и ∠FTS, тогда бы
∠ETF=2*34°=68°, т.е было бы доказано, что TS- биссектриса. А так... маловато данных для определения этого угла. Там в Вашей картинке написано черным продедены.. .возможно, конец этого предложения перпендикуляры.. проведены.. или что?)