Втреугольнике кнм кн=12, нм=9, мк=18. через точку а, лежащую на стороне нм, проведён перпендикуляр к биссекктрисе угла н, пересекающий сторону км в точке в. в каком отношении точка а делит сторону нм, если кс=2кв
ответ:Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.
Объяснение:Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.
Пусть ∠ECB=a. Тогда, т.к. ∠ACB=90°, то . Соответственно . Значит треугольник AHC подобен треугольнику BEC по двум углам (∠AHC=∠BEC=90° и ∠ECB=∠HAC=). Из подобия следует, что . Тогда по теореме Пифагора для ΔABC: .
Приведу решение, в котором используется только теорема Пифагора:
Пусть AC=x. AH=3, а BE=8. Тогда из прямоугольного треугольника AHC . Из прямоугольного треугольника BCE . Значит . Проведем AF - высоту из точки A на BE. Тогда AFEH - прямоугольник => . По теореме Пифагора для прямоугольного треугольника AFB . Но с другой стороны из прямоугольного треугольника ABC , т.е. получили уравнение , откуда x=5, а значит . Тогда .
ответ:Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.
Объяснение:Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.
(см. объяснение)
Объяснение:
Первый
Пусть ∠ECB=a. Тогда, т.к. ∠ACB=90°, то . Соответственно . Значит треугольник AHC подобен треугольнику BEC по двум углам (∠AHC=∠BEC=90° и ∠ECB=∠HAC=). Из подобия следует, что . Тогда по теореме Пифагора для ΔABC: .
Приведу решение, в котором используется только теорема Пифагора:
Пусть AC=x. AH=3, а BE=8. Тогда из прямоугольного треугольника AHC . Из прямоугольного треугольника BCE . Значит . Проведем AF - высоту из точки A на BE. Тогда AFEH - прямоугольник => . По теореме Пифагора для прямоугольного треугольника AFB . Но с другой стороны из прямоугольного треугольника ABC , т.е. получили уравнение , откуда x=5, а значит . Тогда .
Задача решена!