1. ∠BAC=18°; ∠CAB = 72°.
2. 2 см, 7 см.
3. АС=BD=24 см.
4. 25°, 25°, 130°.
5. 20°, 70°, 90°.
Объяснение:
1. ∠ACB=x. Тогда ∠BAC=4x.
Сумма углов треугольника равна 180°. Тук как угол В=90°, то
х+4х=90°;
5х=90°;
х=18° - угол BAC;
угол CAB =4x=4*18= 72°.
***
2. P=2(a+b) = 18 см, где а=х см, b=x+5 см .
2(х+х+5)=18;
2х+5=9;
2х=4;
х=2 см - меньшая сторона;
Большая сторона равна х+5=2+5=7 см.
Проверим:
Р=2(2+7)=2*9=18 см. Всё верно!
3) Треугольник АВО - равносторонний АВ=ВО=АО=12 см.
Диагонали в прямоугольнике делятся пополам. Следовательно АС=BD=2*AO=24 см .
4. В ромбе все стороны и противоположные углы равны. Следовательно треугольник АВС - равнобедренный с углом при вершине 130°.
Сумма углов в треугольнике равна 180°.
∠САВ+∠АВС+∠ВСА=180°;
∠ВАС=∠ВСА=(180°-130°)/2=25°.
5. Диагонали в ромбе пересекаются под углом 90° и углы при вершине делит пополам. Следовательно угол ∠АВО =∠АВС/2=140°/2=70°.
Сумма углов в треугольнике равна 180°:
∠АВО+∠ВОА+∠ОАВ=180°.
∠ВАО=180°-(70°+90°)=180°-160°=20°;
Свойство --- это характеристика известного объекта
(например, если дан ромб, то из этого следует,
что его диагонали взаимно перпендикулярны)))
а признак --- это характеристика неизвестного объекта, т.е.
необходимо определить что это за объект (по признакам)))
т.е. если сказано, что диагонали 4-угольника взаимно перпендикулярны,
то из этого не следует, что это ромб (это НЕ признак)))
если стороны 4-угольника равны, то точно ничего утверждать нельзя
--- может быть это ромб, а может быть это квадрат --- это НЕ признак))
а вот если известно, что это квадрат,
то точно у него стороны равны (это свойство)))
если известно, что это ромб,
если диагонали 4-угольника точкой пересечения делятся пополам,
то это точно параллелограмм (это ПРИЗНАК)))
это может быть и прямоугольник, это может быть и ромб
(они же все являются параллелограммами)))
дан треугольник (какой-то, не известно какой),
но про него известно, что две стороны у него равны (это ПРИЗНАК)
---вывод: это точно равнобедренный треугольник
дан равнобедренный треугольник (известно какой)
---вывод: у него две стороны точно равны (это СВОЙСТВО)
1. ∠BAC=18°; ∠CAB = 72°.
2. 2 см, 7 см.
3. АС=BD=24 см.
4. 25°, 25°, 130°.
5. 20°, 70°, 90°.
Объяснение:
1. ∠ACB=x. Тогда ∠BAC=4x.
Сумма углов треугольника равна 180°. Тук как угол В=90°, то
х+4х=90°;
5х=90°;
х=18° - угол BAC;
угол CAB =4x=4*18= 72°.
***
2. P=2(a+b) = 18 см, где а=х см, b=x+5 см .
2(х+х+5)=18;
2х+5=9;
2х=4;
х=2 см - меньшая сторона;
Большая сторона равна х+5=2+5=7 см.
Проверим:
Р=2(2+7)=2*9=18 см. Всё верно!
***
3) Треугольник АВО - равносторонний АВ=ВО=АО=12 см.
Диагонали в прямоугольнике делятся пополам. Следовательно АС=BD=2*AO=24 см .
***
4. В ромбе все стороны и противоположные углы равны. Следовательно треугольник АВС - равнобедренный с углом при вершине 130°.
Сумма углов в треугольнике равна 180°.
∠САВ+∠АВС+∠ВСА=180°;
∠ВАС=∠ВСА=(180°-130°)/2=25°.
***
5. Диагонали в ромбе пересекаются под углом 90° и углы при вершине делит пополам. Следовательно угол ∠АВО =∠АВС/2=140°/2=70°.
Сумма углов в треугольнике равна 180°:
∠АВО+∠ВОА+∠ОАВ=180°.
∠ВАО=180°-(70°+90°)=180°-160°=20°;
Свойство --- это характеристика известного объекта
(например, если дан ромб, то из этого следует,
что его диагонали взаимно перпендикулярны)))
а признак --- это характеристика неизвестного объекта, т.е.
необходимо определить что это за объект (по признакам)))
т.е. если сказано, что диагонали 4-угольника взаимно перпендикулярны,
то из этого не следует, что это ромб (это НЕ признак)))
если стороны 4-угольника равны, то точно ничего утверждать нельзя
--- может быть это ромб, а может быть это квадрат --- это НЕ признак))
а вот если известно, что это квадрат,
то точно у него стороны равны (это свойство)))
если известно, что это ромб,
то точно у него стороны равны (это свойство)))
если диагонали 4-угольника точкой пересечения делятся пополам,
то это точно параллелограмм (это ПРИЗНАК)))
это может быть и прямоугольник, это может быть и ромб
(они же все являются параллелограммами)))
дан треугольник (какой-то, не известно какой),
но про него известно, что две стороны у него равны (это ПРИЗНАК)
---вывод: это точно равнобедренный треугольник
дан равнобедренный треугольник (известно какой)
---вывод: у него две стороны точно равны (это СВОЙСТВО)