Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Высота ВН равна 8, это следует из того, что треугольник АВН по признаку- равнобедренный, т.к. угол А в нем 45°. а угол этот 45°, потому что по свойству углов параллелограмма, прилежащих к стороне АD, сумма углов А и D равна 180°, 180°-135=45°, и. наконец, почему угол D равен 135°? Потому что сумма углов выпуклого четырехугольника НВКD равна 360°, в этом четырехугольнике известно три угла. ∠H=90°, ∠K=90°, ∠В=45°, значит, четвертый, т.е. ∠D=360°-90°-90°-45°=135°;
основание АD=AH+HD=8+2=10, значит, площадь параллелограмма равна AD*BH=10*8=80/ед. кв./
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
Высота ВН равна 8, это следует из того, что треугольник АВН по признаку- равнобедренный, т.к. угол А в нем 45°. а угол этот 45°, потому что по свойству углов параллелограмма, прилежащих к стороне АD, сумма углов А и D равна 180°, 180°-135=45°, и. наконец, почему угол D равен 135°? Потому что сумма углов выпуклого четырехугольника НВКD равна 360°, в этом четырехугольнике известно три угла. ∠H=90°, ∠K=90°, ∠В=45°, значит, четвертый, т.е. ∠D=360°-90°-90°-45°=135°;
основание АD=AH+HD=8+2=10, значит, площадь параллелограмма равна AD*BH=10*8=80/ед. кв./