Введите с клавиатуры пропущенные элементы текста. Дано: Δ A B C , D – середина В С , D P ⊥ А В , D F ⊥ A C , D P = D F . Доказать: Δ A B C – равнобедренный.
α-тупой угол, диагональ АС разбивает параллелограмм на два равных треугольника, в треугольнике АВС есть три угла α;β; (180-(α+β)); sin(180-(α+β))=sin(α+β)=sinα*cosβ+sinβ*cosα
9)Пусть дана трапеция ABCD, углы BAD и ABC - прямые. Проведем высоту DH ,тогда разностью оснований трапеции будет отрезок HC(так как AD=BH). Обозначим AB как 4x , тогда DC 5x - (по условию).Из прямоугольного треугольника DHC по теореме Пифагора отрезок HC равен √25x^2-16x^2= 3x, то есть BC-AD=18=3x,откуда x=6, DC=5x=30(см.),AB=DH=4x=24(см.). Из прямоугольного треугольника BDH по теореме Пифагора находим BH: BH=√26^2-24^2=10(см.), основание BC равно HC+BH=28(см.). Площадь трапеции S(ABCD)=(AD+BC)/2*DH= (28+10)/2*24=456 (см^2). ответ: 456
5) Пусть дана трапеция ABCD, углы BAD и ABC - прямые. Проведем высоту DH,тогда отрезок HC=BC-AD=8 (см.). Из прямоугольного треугольника DHC найдем по теореме Пифагора высоту DH: DH=√DC^-HC^2=6 (см.). Площадь трапеции S(ABCD)=(AD+BC)/2*DH=(5+13)/2*6=54(см^2.). ответ: 54
α-тупой угол, диагональ АС разбивает параллелограмм на два равных треугольника, в треугольнике АВС есть три угла α;β; (180-(α+β)); sin(180-(α+β))=sin(α+β)=sinα*cosβ+sinβ*cosα
cosβ=√(1-sin²β)=√(1-64/289)=√(225/289)=15/17;
cosα=-√(1-sin²α)=-√(1-144/169)=-√(25/169)=-5/13;
sin(α+β)=(12/13)*(5/17)-(8/17)*(5/13)=(60-40)/(17*13)=20/(17*13);
По следствию из теоремы синусов АС/sin(180-(α+β))=BC/sinα=AB/sinβ;
5/(20/17*13)= BC/sinα; BC=5*17*13*12/(13*20)=51
5/(20/17*13)=AB/sinβ; АВ=5*17*13*8/(17*20)=26
Значит, площадь равна АВ*АС*sin(α+β)=51*26*(20/17*13)=120
ответ 120,00
Посмотрел на задание, которое Вам предложили в качестве решения в комментариях. Проверил. ответ тот же. )
Объяснение:
Проведем высоту DH ,тогда разностью оснований трапеции будет отрезок HC(так как AD=BH).
Обозначим AB как 4x , тогда DC 5x - (по условию).Из прямоугольного треугольника
DHC по теореме Пифагора отрезок HC равен √25x^2-16x^2= 3x,
то есть BC-AD=18=3x,откуда x=6, DC=5x=30(см.),AB=DH=4x=24(см.).
Из прямоугольного треугольника BDH по теореме Пифагора находим BH:
BH=√26^2-24^2=10(см.), основание BC равно HC+BH=28(см.).
Площадь трапеции S(ABCD)=(AD+BC)/2*DH= (28+10)/2*24=456 (см^2).
ответ: 456
5) Пусть дана трапеция ABCD, углы BAD и ABC - прямые.
Проведем высоту DH,тогда отрезок HC=BC-AD=8 (см.).
Из прямоугольного треугольника DHC найдем по теореме Пифагора высоту DH:
DH=√DC^-HC^2=6 (см.).
Площадь трапеции S(ABCD)=(AD+BC)/2*DH=(5+13)/2*6=54(см^2.).
ответ: 54