Ввыпуклом четырёхугольнике abcd диагональ ac перпендикулярна стороне cd, а диагональ bd перпендикулярна стороне ab. докажите, что сумма углов a и c этого четырёхугольника равна 180°.
Высота равнобедренного треугольника, опущенная на основание является медианой, то есть делит основание на 2 равных отрезка, т.е. AH = HC = AC : 2 = 16 : 2 = 8 (см)
Тогда боковую сторону можем найти по теореме Пифагора: BC = \sqrt{BH^{2} + HC^{2}} = \sqrt{8^{2} + 15^{2}} = \sqrt{64 + 225} = \sqrt{289} = 17 (cm)BC=
BH
2
+HC
2
=
8
2
+15
2
=
64+225
=
289
=17(cm)
Пользуясь определениями синуса, косинуса, тангенса и котангенса найдем их для <C. Будем рассматривать прямоугольный треугольник BHC:
\begin{gathered}sin < C = \frac{BH}{BC} = \frac{15}{17}cos < C = \frac{HC}{BC} = \frac{8}{17}tg < C = \frac{BH}{HC} = \frac{15}{8} = 1\frac{7}{8} ctg < C = \frac{HC}{BH} = \frac{8}{15}\end{gathered}
Cумма односторонних углов при параллельных прямых равна 180°.
∠A+∠B=180° <=>
180° -2∠AMD +180° -2∠BMC =180° <=>
∠AMD+∠BMC =180°/2 =90°
∠CMD= 180°-∠AMD+∠BMC =180°-90° =90°
ИЛИ
Средняя линия MN делит ABCD на два равных параллелограмма. Основания ABCD равны половинам его сторон, следовательно BMNC и AMND - ромбы. Диагонали ромба являются биссектрисами его углов.
sin<C=
BC
BH
=
17
15
cos<C=
BC
HC
=
17
8
tg<C=
HC
BH
=
8
15
=1
8
7
ctg<C=
BH
HC
=
15
8
Объяснение:
Высота равнобедренного треугольника, опущенная на основание является медианой, то есть делит основание на 2 равных отрезка, т.е. AH = HC = AC : 2 = 16 : 2 = 8 (см)
Тогда боковую сторону можем найти по теореме Пифагора: BC = \sqrt{BH^{2} + HC^{2}} = \sqrt{8^{2} + 15^{2}} = \sqrt{64 + 225} = \sqrt{289} = 17 (cm)BC=
BH
2
+HC
2
=
8
2
+15
2
=
64+225
=
289
=17(cm)
Пользуясь определениями синуса, косинуса, тангенса и котангенса найдем их для <C. Будем рассматривать прямоугольный треугольник BHC:
\begin{gathered}sin < C = \frac{BH}{BC} = \frac{15}{17}cos < C = \frac{HC}{BC} = \frac{8}{17}tg < C = \frac{BH}{HC} = \frac{15}{8} = 1\frac{7}{8} ctg < C = \frac{HC}{BH} = \frac{8}{15}\end{gathered}
sin<C=
BC
BH
=
17
15
cos<C=
BC
HC
=
17
8
tg<C=
HC
BH
=
8
15
=1
8
7
ctg<C=
BH
HC
=
15
8
Объяснение:
MB= AB/2
BC/AB=1/2 <=> BC= AB/2 =MB
△BMC - равнобедренный.
∠BMC=∠BCM
Аналогично ∠AMD=∠ADM
∠A= 180°-∠AMD-∠ADM =180°-2∠AMD
∠B= 180°-∠BMC-∠BCM =180°-2∠BMC
Cумма односторонних углов при параллельных прямых равна 180°.
∠A+∠B=180° <=>
180° -2∠AMD +180° -2∠BMC =180° <=>
∠AMD+∠BMC =180°/2 =90°
∠CMD= 180°-∠AMD+∠BMC =180°-90° =90°
ИЛИ
Средняя линия MN делит ABCD на два равных параллелограмма. Основания ABCD равны половинам его сторон, следовательно BMNC и AMND - ромбы. Диагонали ромба являются биссектрисами его углов.
∠CMD =∠CMN+∠DMN =∠BMN/2+∠AMN/2 =180/2 =90.
Объяснение: