Ввыпуклом четырёхугольнике abcd диагональ ac перпендикулярна стороне cd, а диагональ bd перпендикулярна стороне ab. докажите, что сумма углов a и c этого четырёхугольника равна 180°.
Заметим, что в правильной четырехугольной пирамиде основание высоты совпадает с точкой пересечения диагоналей основания (точка О на рисунке). Следовательно, отрезок SO перпендикулярен плоскости ABC. Так как прямая AC лежит в плоскости ABC, то SO⊥AC (угол SOC прямой). Тогда SC можно найти из теоремы Пифагора для прямоугольного треугольника SOC. Нам понадобятся длины катетов SO и OC.
AC - диагональ квадрата ABCD. Значит, AC = AD*√2. OC = AC/2.
Диагональным сечением, очевидно, является треугольник SAC. Его площадь известна из условия. Зная ее и AC, находим SO.
На прямой отмечены точки а,b,c,d так, что точка c лежит между точками a и b, а точка b принадлежит отрезку cd. ac=65 см, bd=6,4 дм. Сравните отрезки ab и cdПереведем длину bd в сантиметры. bd=64 см Нарисуем прямую с расположенными на ней точками, и найдем, что длина На прямой отмечены точки а,b,c,d так, что точка c лежит между точками a и b, а точка b принадлежит отрезку cd. отмечаем точки по очереди с лева на право: a, c, b, d отметим что отрезок CB=х тогда: AB=65+x, а СD=64+x, сравниваем, получаем что AB>CD
Чертеж и весь счет во вложении.
Заметим, что в правильной четырехугольной пирамиде основание высоты совпадает с точкой пересечения диагоналей основания (точка О на рисунке). Следовательно, отрезок SO перпендикулярен плоскости ABC. Так как прямая AC лежит в плоскости ABC, то SO⊥AC (угол SOC прямой). Тогда SC можно найти из теоремы Пифагора для прямоугольного треугольника SOC. Нам понадобятся длины катетов SO и OC.
AC - диагональ квадрата ABCD. Значит, AC = AD*√2. OC = AC/2.
Диагональным сечением, очевидно, является треугольник SAC. Его площадь известна из условия. Зная ее и AC, находим SO.
Дальше вычисляем SC.
ответ: 10 см.
тогда: AB=65+x, а СD=64+x, сравниваем, получаем что AB>CD