В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
MarinaKim111
MarinaKim111
21.04.2022 13:36 •  Геометрия

Ввыпуклом четырёхугольнике abcd на сторонах ad и cd взяты точки м и n, такие, что каждая из прямых см и an делит abcd на две фигуры равных площадей. а) докажите, что ac || mn. б) найдите отношение площадей четырёхугольников abcd и abc о, где о — точка пересечения bd и mn.

Показать ответ
Ответ:
DaniilTatarinov
DaniilTatarinov
20.07.2020 07:04
1) S_{ANM}=S_{AND}-S_{MND},
S_{CMN}=S_{CMD}-S_{MND}
.
Но  S_{AND}=S_{CMD}=\frac{1}{2}S_{ABCD}, поэтому S_{ANM}=S_{CMN}, а т.к. у них общее основание MN, то их высоты, опущенные на МN равны, и значит  AC||MN.
2) S_{ABCO}=S_{ABC}+S_{ACO}.
S_{ACO}=S_{ACM} т.к. у них общее основание AC и равные высоты, т.к. по п.1 доказали, что AC||MN. Значит
S_{ABCO}=S_{ABC}+S_{ACM}=S_{ABCM}=\frac{1}{2}S_{ABCD}. Т.е. искомое отношение площадей равно 2.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота