Ввыпуклом четырехугольнике abcd точки m, n, t, k – середины сторон ab, bc, cd и ad соответственно. известно, что nk - биссектриса угла mnt. докажите, что mn = nt = tk = km. заранее !
MN II AB как средняя линия в треугольнике ABC; ML II CD как средняя линия BCD; KL II AB как средняя линия ABD; KN II CD как средняя линия ACD; Поэтому противоположные стороны четырехугольника KLMN параллельны, то есть это параллелограмм. По условию его диагонали KM и LN перпендикулярны, то есть это - ромб, все его стороны равны. Так же по условию KN = LN, то есть треугольник KNL равносторонний. Следовательно ∠NKL = 60°; Так как стороны этого угла параллельны сторонам искомого угла (то есть KL II AB; KN II CD), то прямые AB и CD тоже образуют угол 60°.
ML II CD как средняя линия BCD;
KL II AB как средняя линия ABD;
KN II CD как средняя линия ACD;
Поэтому противоположные стороны четырехугольника KLMN параллельны, то есть это параллелограмм.
По условию его диагонали KM и LN перпендикулярны, то есть это - ромб, все его стороны равны.
Так же по условию KN = LN, то есть треугольник KNL равносторонний.
Следовательно ∠NKL = 60°;
Так как стороны этого угла параллельны сторонам искомого угла (то есть KL II AB; KN II CD), то прямые AB и CD тоже образуют угол 60°.