На самом деле в условии неявно предполагается, что точки A и B лежат в одной полуплоскости относительно прямой CD. В противном случае это не так :). Я в решении этим пользуюсь. Все точки, из которых отрезок DC виден под тем же углом, что и из точки А, лежат на дуге CAD окружности, описанной вокруг треугольника ABC. Доказать это очень просто - если точка B лежит где то в другом месте (в одной полуплоскости с точкой A), то прямая DB или прямая CB пересекает дугу CAD (пересекать дугу могут и обе прямые, но важно именно то, что одна прямая ОБЯЗАТЕЛЬНО пересекает дугу), и из точки пересечения B1 хорда видна под тем же углом, то есть получается треугольник BB1C (или BB1D, берется именно та прямая, которая пересекает дугу CAD), у которого внешний угол равен внутреннему. Чего быть не может :). Поэтому четырехугольник ABCD вписанный, и углы CDB и CAB опираются на дугу CB. Поэтому они равны.
Вариант решения. Обоозначим точку пересечения DВ и АС буквой О. Рассмотрим треугольники АОD и ВОС. Они подобны. В них имеются два равных угла ( кроме DАС=DВС равны и вертикальные углы при О.) (I признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.) Соответственные стороны подобных треугольников пропорциональны. DО:ОС=АО:ОВ. В треугольниках DОС и АОВ вертикальные углы при О равны, стороны одного треугольника, содержащие этот угол, пропорциональны соответственным сторонам другого треугольника. Эти треугольники подобны. (III признак подобия треугольников. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны). Следовательно, СD:АВ=DО:ОА, И углы СДВ и САВ, заключенные между пропорциональными сторонами этих треугольников, равны. ----- [email protected]
Я в решении этим пользуюсь.
Все точки, из которых отрезок DC виден под тем же углом, что и из точки А, лежат на дуге CAD окружности, описанной вокруг треугольника ABC.
Доказать это очень просто - если точка B лежит где то в другом месте (в одной полуплоскости с точкой A), то прямая DB или прямая CB пересекает дугу CAD (пересекать дугу могут и обе прямые, но важно именно то, что одна прямая ОБЯЗАТЕЛЬНО пересекает дугу), и из точки пересечения B1 хорда видна под тем же углом, то есть получается треугольник BB1C (или BB1D, берется именно та прямая, которая пересекает дугу CAD), у которого внешний угол равен внутреннему. Чего быть не может :).
Поэтому четырехугольник ABCD вписанный, и углы CDB и CAB опираются на дугу CB. Поэтому они равны.
Обоозначим точку пересечения DВ и АС буквой О.
Рассмотрим треугольники АОD и ВОС.
Они подобны. В них имеются два равных угла ( кроме DАС=DВС равны и вертикальные углы при О.)
(I признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.)
Соответственные стороны подобных треугольников пропорциональны. DО:ОС=АО:ОВ.
В треугольниках DОС и АОВ вертикальные углы при О равны, стороны одного треугольника, содержащие этот угол, пропорциональны соответственным сторонам другого треугольника. Эти треугольники подобны.
(III признак подобия треугольников. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны).
Следовательно, СD:АВ=DО:ОА,
И углы СДВ и САВ, заключенные между пропорциональными сторонами этих треугольников, равны.
-----
[email protected]