Формула объема пирамиды V=S•h/3, где S – площадь основания пирамиды, h - её высота.
Стороны ромба равны. По условию боковые грани наклонены к плоскости основания под углом β.
Если боковые грани пирамиды наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проецируется в центр этой окружности.
Центр окружности, вписанной в ромб – точка пересечения его диагоналей, а расстояние от него до сторон равно радиусу вписанной окружности.
Высота пирамиды, радиус вписанной окружности и высота боковой грани образуют прямоугольный треугольник, при этом высота боковой грани и радиус вписанной окружности образуют линейный угол между основанием и боковой гранью, т.к. по т. о 3-х перпендикулярах перпендикулярны стороне ромба (ребру двугранного угла) в одной точке.
Диаметр окружности, вписанной в ромб, перпендикулярен его сторонам, параллелен высоте ромба и равен ей. На рисунке приложения АК = высота ромба. АК=АD•sinα=a•sinα ⇒ HO=r=a•sinα•1/2. Из прямоугольного ∆ МОН высота пирамиды МО=ОН•tgβ=(a•sinα•1/2)tgβ
У параллелограмма попарные стороны равны⇒АВ=СД=9 см, а АД=ВС
Биссектриса угла параллелограмма отсекает от него р/б Δ⇒
Биссектриса ∠В отсекла р/б Δ АВК ⇒АК=АВ=9 см
Биссектриса ∠С отсекла р/б Δ СДК ⇒КД=СД=9 см
АД=9+9=18 см
КH является высотой параллелограмма, т к точка К лежит на ВС. Расстоянием между параллельными прямыми называется расстояние от какой-нибудь точки одной прямой до другой прямой.
Можем посчитать площадь:
S=АД*КН=18*6=108 см²
2.
Обозначим Δ буквами АВС, где ∠В=36° (см рисунок) и АВ=ВС, и найдем два остальных угла р/б ΔАВС=(180-36)\2=72°
ответ: V=a³•sin²α•tgβ/6
Объяснение - очень подробно:
Формула объема пирамиды V=S•h/3, где S – площадь основания пирамиды, h - её высота.
Стороны ромба равны. По условию боковые грани наклонены к плоскости основания под углом β.
Если боковые грани пирамиды наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проецируется в центр этой окружности.
Центр окружности, вписанной в ромб – точка пересечения его диагоналей, а расстояние от него до сторон равно радиусу вписанной окружности.
Высота пирамиды, радиус вписанной окружности и высота боковой грани образуют прямоугольный треугольник, при этом высота боковой грани и радиус вписанной окружности образуют линейный угол между основанием и боковой гранью, т.к. по т. о 3-х перпендикулярах перпендикулярны стороне ромба (ребру двугранного угла) в одной точке.
Диаметр окружности, вписанной в ромб, перпендикулярен его сторонам, параллелен высоте ромба и равен ей. На рисунке приложения АК = высота ромба. АК=АD•sinα=a•sinα ⇒ HO=r=a•sinα•1/2. Из прямоугольного ∆ МОН высота пирамиды МО=ОН•tgβ=(a•sinα•1/2)tgβ
S(ABCD)=AD•CD•sinα=a²•sinα
V=a²•sinα•(a•sinα•1/2)tgβ/3=a³•sin²α•tgβ/6
1. 108 см²
2. АВ=ВС=10+2√5; АС=4√5 (см рисунок)
Объяснение:
1.
У параллелограмма попарные стороны равны⇒АВ=СД=9 см, а АД=ВС
Биссектриса угла параллелограмма отсекает от него р/б Δ⇒
Биссектриса ∠В отсекла р/б Δ АВК ⇒АК=АВ=9 см
Биссектриса ∠С отсекла р/б Δ СДК ⇒КД=СД=9 см
АД=9+9=18 см
КH является высотой параллелограмма, т к точка К лежит на ВС. Расстоянием между параллельными прямыми называется расстояние от какой-нибудь точки одной прямой до другой прямой.
Можем посчитать площадь:
S=АД*КН=18*6=108 см²
2.
Обозначим Δ буквами АВС, где ∠В=36° (см рисунок) и АВ=ВС, и найдем два остальных угла р/б ΔАВС=(180-36)\2=72°
Биссектриса поделила ∠А пополам ⇒∠ВАД=∠ДАС=36°. Найдем ∠АДС=180-36-72=72°
Мы видим, что Δ САД подобен ΔАВС (по трем углам).
Выразим соотношение сторон: АС/ДС=ВС/АД
Возьмем СД за х, тогда АВ=ВС=√80+х:
√80/х=(√80+х)/√80⇒х(√80+х)=√80*√80=
х²+√х-80=0 Решим уравнение:
Дискриминант равен: (√80)²-4*1*(-80)=80+320=400=20²
Найдем корни:
***√80=√16*√5=4√5
X=(-√80+√20²)/2*1=(-√80+20)/2=(-4√5+20)/2=2(-2√5+10)/2=-2√5+10=10-2√5 - это ДС
Посчитаем все стороны ΔАВС:
АВ=ВС=4√5+(10-2√5)=4√5+10-2√5=10+2√5
АС=√80=4√5