1. Сумма углов прилегающих к боковой стороне равнобедренной трапеции равна 180°:
∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°
2. Если в равнобедренную трапецию можно вписать окружность, то боковая сторона равна средней лини трапеции:
AB = CD = m
3. Вокруг равнобедренной трапеции можно описать окружность
4. Если диагонали взаимно перпендикулярны, то высота равна полусумме оснований (средней лини):
h = m
5. Если диагонали взаимно перпендикулярны, то площадь трапеции равна квадрату высоты:
SABCD = h2
6. Если в равнобедренную трапецию можно вписать окружность, то квадрат высоты равен произведению основ трапеции:
h2 = BC · AD
7. Сумма квадратов диагоналей равна сумме квадратов боковых сторон плюс удвоенному произведению основ трапеции:
AC2 + BD2 = AB2 + CD2 + 2BC · AD
8. Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции:
HF ┴ BC, HF ┴ AD
9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) - равен полуразности оснований
Рис.1
Признаки равнобедренной трапеции
Трапеция будет равнобедренной если выполняется одно из этих условий:
1. Углы при основе равны:
∠ABC = ∠BCD и ∠BAD = ∠ADC
2. Диагонали равны:
AC = BD
3. Одинаковые углы между диагоналями и основаниями:
∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC
4. Сумма противоположных углов равна 180°:
∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°
5. Вокруг трапеции можно описати окружность
Основные свойства равнобедренной трапеции
1. Сумма углов прилегающих к боковой стороне равнобедренной трапеции равна 180°:
∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°
2. Если в равнобедренную трапецию можно вписать окружность, то боковая сторона равна средней лини трапеции:
AB = CD = m
3. Вокруг равнобедренной трапеции можно описать окружность
4. Если диагонали взаимно перпендикулярны, то высота равна полусумме оснований (средней лини):
h = m
5. Если диагонали взаимно перпендикулярны, то площадь трапеции равна квадрату высоты:
SABCD = h2
6. Если в равнобедренную трапецию можно вписать окружность, то квадрат высоты равен произведению основ трапеции:
h2 = BC · AD
7. Сумма квадратов диагоналей равна сумме квадратов боковых сторон плюс удвоенному произведению основ трапеции:
AC2 + BD2 = AB2 + CD2 + 2BC · AD
8. Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции:
HF ┴ BC, HF ┴ AD
9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) - равен полуразности оснований
По условию дано, что ОМ + ОР = 15 см. Пусть ОМ = х , тогда ОР = 15 - х.
Рассмотрим треугольники КОМ и КОР. Данные треугольники являются прямоугольными, так как КО - перпендикуляр к плоскости альфа.
По теореме Пифагора выразим общий катет (KO) треугольников КОМ и КОР:
1. В треугольнике КОМ:
КО^2 = 15^2 - OM^2
KO^2 = 225 - x^2
2. В треугольнике КОР:
КО^2 = (10sqrt3)^2 - OP^2
KO^2 = 100 * 3 - (15 - x)^2
KO^2 = 300 - (15 - x)^2
Из двух полученных значений КО^2 следует, что:
KO^2 = 225 - x^2 = 300 - (15 - x)^2
или
225 - x^2 = 300 - (15 - x)^2
Тогда x = 5 => OM = 5 (см)
Из треугольника КОМ выразима КО по теореме Пифагора, т.е.:
КО = sqrt (225 – 25) = sqrt 200 = sqrt (100 * 2) = 10 sqrt 2
Далее, если нужно, выражаем это значение более подробно.
Для этого находим значение квадратного корня из двух и решаем:
Sqrt 2 ~ 1, 414 ~ 1, 4 => KO ~ 10 * 1,4 => KO ~ 14 (см)
ответ: 10 sqrt 2 (или 14 см).