Сечение пирамиды плоскостью, параллельной ее основанию (перпендикулярной высоте) есть многоугольник, подобный основанию пирамиды, причем коэффициент подобия этих многоугольников равен отношению их расстояний от вершины пирамиды. Площади сечений, параллельных основанию пирамиды, относятся как квадраты их расстояний от вершины пирамиды. S/S₁=(H/H₁)² Т.к. боковое ребро длиной L поделено в соотношении L₁/L₂=2/3, значит L/L₁=5/2=2,5, тогда и расстояние (высота пирамиды) H/H₁=2,5. Площадь сечения S₁=S/2.5²=50/6.25=8
Если принять AC = BC = 1; то AB = √2; Если симметрично отобразить треугольник вместе с полуокружностью относительно AC, то получится равнобедренный прямоугольный треугольник ABB1 с гипотенузой BB1 = 2 и вписанной в него окружностью. Отсюда диаметр этой окружности PC = AB + AB1 - BB1 = 2√2 - 2; Треугольник PCB - прямоугольный с катетами BC = 1; PC = 2√2 - 2; Если M - точка пересечения PB и полуокружности, то ∠CMP - прямой, поскольку опирается на диаметр, то есть CM - высота в прямоугольном треугольнике PCB; она делит гипотенузу PB в отношении, равном квадрату отношения катетов, то есть PM/MB = (PC/BC)^2 = 4(√2 - 1)^2 = 4(3 - 2√2);
Площади сечений, параллельных основанию пирамиды, относятся как квадраты их расстояний от вершины пирамиды.
S/S₁=(H/H₁)²
Т.к. боковое ребро длиной L поделено в соотношении L₁/L₂=2/3, значит L/L₁=5/2=2,5, тогда и расстояние (высота пирамиды) H/H₁=2,5.
Площадь сечения S₁=S/2.5²=50/6.25=8
Если симметрично отобразить треугольник вместе с полуокружностью относительно AC, то получится равнобедренный прямоугольный треугольник ABB1 с гипотенузой BB1 = 2 и вписанной в него окружностью. Отсюда диаметр этой окружности PC = AB + AB1 - BB1 = 2√2 - 2;
Треугольник PCB - прямоугольный с катетами BC = 1; PC = 2√2 - 2;
Если M - точка пересечения PB и полуокружности, то ∠CMP - прямой, поскольку опирается на диаметр, то есть CM - высота в прямоугольном треугольнике PCB; она делит гипотенузу PB в отношении, равном квадрату отношения катетов, то есть
PM/MB = (PC/BC)^2 = 4(√2 - 1)^2 = 4(3 - 2√2);