В прямоугольном треугольнике АFС угол между биссектрисой СК и высотой СН, проведёнными из вершины прямого угла С, равен 15°. Сторона АF = 48 см. Найдите сторону АС, если известно, что точка К лежит между F и Н.
Сумма острых углов в прямоугольном треугольнике 90 градусов, поэтому сумма их половин 45 градусов, и углы между биссектрисами острых углов будут 45 градусов и 135 (ну, там 4 угла, пары вертикальных... в сумме 180, конечно). Значит, речь идет не о двух острых углах, а о прямом и остром. Тем же определяем, что углы между биссектрисами прямого и острого угла Ф равны Ф/2 + 45 градусов и 135 - Ф/2 градусов.в первом случае Ф =2*(130 - 45) = 85 градусов, а второй угол треугольника 90 - Ф = 5 градусов.Во втором случае 135 - Ф/2 = 92.5 просто получается Ф > 90. Поэтому,пользуясь первым случаем, получаем, что углы равны 85 и 5.
1. Найдем координаты векторов АВ, АС, АД, везде, где речь идет о векторах, над ними ставьте черту или стрелку. Но у меня к сожалению нет такой возможности. Чтобы найти их координаты, надо от координат конца вычесть координаты начала вектора, АВ(-2-3; 1-2;3-4); АВ(-5;-1;-1)
АС(-1;-4;-5); АД(-1;3;-) Объем найдем, как 1/6 от модуля детерминанта или определителя, где в первой строке поставим координаты вектора АВ, во второй АС , в третьей АД, и вычислим этот определитель по правилу треугольника.
v=(1/6)*║-5 -1 -1 ║
║-1 -4 -5║
║ -1 3 1║, здесь линии должны быть непрерывными, как в модуле, а раскрывается этот определитель так
(1/6)*(модуль от (20-5+3+4-1-75))= модуль минус 54/6=9, т.е. объем равен
9 ед. куб. Из формулы объема пирамиды, известного из курса средней школы, v=s*h/3, находим высоту h=3v/s=3*9/15.3=9/5.1=30/17≈1.76
1. Найдем координаты векторов АВ, АС, АД, везде, где речь идет о векторах, над ними ставьте черту или стрелку. Но у меня к сожалению нет такой возможности. Чтобы найти их координаты, надо от координат конца вычесть координаты начала вектора, АВ(-2-3; 1-2;3-4); АВ(-5;-1;-1)
АС(-1;-4;-5); АД(-1;3;-) Объем найдем, как 1/6 от модуля детерминанта или определителя, где в первой строке поставим координаты вектора АВ, во второй АС , в третьей АД, и вычислим этот определитель по правилу треугольника.
v=(1/6)*║-5 -1 -1 ║
║-1 -4 -5║
║ -1 3 1║, здесь линии должны быть непрерывными, как в модуле, а раскрывается этот определитель так
(1/6)*(модуль от (20-5+3+4-1-75))= модуль минус 54/6=9, т.е. объем равен
9 ед. куб. Из формулы объема пирамиды, известного из курса средней школы, v=s*h/3, находим высоту h=3v/s=3*9/15.3=9/5.1=30/17≈1.76