20 см
Объяснение:
1) Пусть дана трапеция АВСD (∠А = 90°; ∠В = 90°), с основаниями AD и ВС и боковыми сторонами АВ и СD, где CD - большая боковая сторона.
2) Так как в трапецию можно вписать окружность, то суммы длин противоположных её сторон равны, то есть:
ВС + AD = AB + CD = 60 : 2 = 30 см
3) Так как трапеция прямоугольная, то длина её меньшей боковой стороны АВ равна диаметру окружности, вписанной в трапецию
АВ = 2 · R = 2 · 5 = 10 cм
4) Зная АВ, находим СD:
AB + CD = 30
10 + CD = 30
CD = 30 - 10 = 20 см
ответ: 20 см
Четырёхугольник ABCD - параллелограмм.
∠В - тупой.
∠В = 118°.
Острый угол параллелограмма = ?
Нам дан один тупой угол - это ∠В. А как теперь понять какой ещё тупой угол в этом параллелограмме?
А дело в том, что -
На рисунке ∠В = ∠D = 118°.
Тогда остаётся, что ∠А = ∠С - острые.
То есть -
∠А + ∠В + ∠С + ∠D = 360°
∠А + ∠C = 360° - ∠В - ∠D
∠А + ∠C = 360° - 118° - 118°
∠А + ∠C = 124°
∠A = ∠C = 124° : 2 = 62°.
62°.
20 см
Объяснение:
1) Пусть дана трапеция АВСD (∠А = 90°; ∠В = 90°), с основаниями AD и ВС и боковыми сторонами АВ и СD, где CD - большая боковая сторона.
2) Так как в трапецию можно вписать окружность, то суммы длин противоположных её сторон равны, то есть:
ВС + AD = AB + CD = 60 : 2 = 30 см
3) Так как трапеция прямоугольная, то длина её меньшей боковой стороны АВ равна диаметру окружности, вписанной в трапецию
АВ = 2 · R = 2 · 5 = 10 cм
4) Зная АВ, находим СD:
AB + CD = 30
10 + CD = 30
CD = 30 - 10 = 20 см
ответ: 20 см
Четырёхугольник ABCD - параллелограмм.
∠В - тупой.
∠В = 118°.
Найти :Острый угол параллелограмма = ?
Решение :Если в параллелограмме имеется один тупой угол, то в этом параллелограмме есть ещё один тупой угол и два острых угла.Нам дан один тупой угол - это ∠В. А как теперь понять какой ещё тупой угол в этом параллелограмме?
А дело в том, что -
В параллелограмме противоположные углы равны.На рисунке ∠В = ∠D = 118°.
Тогда остаётся, что ∠А = ∠С - острые.
Сумма внутренних углов любого четырёхугольника равна 360°.То есть -
∠А + ∠В + ∠С + ∠D = 360°
∠А + ∠C = 360° - ∠В - ∠D
∠А + ∠C = 360° - 118° - 118°
∠А + ∠C = 124°
∠A = ∠C = 124° : 2 = 62°.
ответ :62°.