Выберите верные утверждения и запишите в ответе их номера. 1) В любом прямоугольнике диагонали взаимно перпендикулярны.
2) Через любые две различные точки плоскости можно провести не менее одной
окружности.
3) Средняя линия треугольника параллельна одной из его сторон.
ответ:
Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, угол АВС=180°-30°=150°
Пусть АВ=4см
ВС=4√3 см
АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС²=16+48+32√3*(√3):2=112
АС=√112=4√7
Высота призмы
СС1=АС: ctg(60°)=(4√7):1/√3
CC1=4√21
Площадь боковой поверхности данной призмы
S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²
Пусть x - угол при основании (∠A и ∠C), тогда угол при вершине (∠B) равен 2x. Получим уравнение
x + x + 2x = 180 (сумма углов треугольника равна 180°)
4x = 180
x = 180/4 = 45°
AH = AC/2 = 4/2 = 2 см (расстояние есть высота, а высота в равнобедренном треугольнике, проведенная к основанию, является его медианой, т. е. делит основание на 2 равные части)
Рассмотрим ΔABH: ∠H = 90°, ∠A = 45°
∠B = 90 - 45 = 45° (сумма острых углов прямоугольного треугольника равна 90°) ==> ΔABH - равнобедренный ==> AH = BH = 2 см
BH есть расстояние от вершины равнобедренного треугольника до основания.
ответ: BH = 2 см