Выберите все фигуры, у которых есть центр симметрии. 1. две параллельные прямые 2. две пересекающиеся прямые 3. три прямые, образующие равносторонний треугольник 4. три прямые, пересекающиеся в одной точке 5. четыре параллельные прямые, расстояния между соседними прямыми равны 1, 2, 3 соответственно 6. четыре пересекающиеся в одной точке прямые, углы между соседними прямыми равны 10∘, 20∘, 30∘ соответственно
Объяснение:
Обозначим величину угла ACB через х.
Выразим через х величину угла ВАС.
Согласно условию задачи, величина угол BAC в 2 раза больше, чем величина угла ACB, следовательно, величина угла ВАС составляет 2х.
Рассмотрим треугольник АВС.
В данном треугольнике угол АВС является прямым.
Поскольку сумма углов любого треугольник равна 180°, можем составить следующее уравнение:
х + 2х + 90 = 180.
Решаем полученное уравнение и находим величину угла ACB:
3х + 90 = 180;
3х = 180 - 90;
3х = 90;
х = 90 / 3;
х = 30°.
Находим величину угла ВАС:
2х = 2 * 30 = 60°.
ответ: угол ACB равен 30°, угол BAC равен 60°.
1. ∠BAC=18°; ∠CAB = 72°.
2. 2 см, 7 см.
3. АС=BD=24 см.
4. 25°, 25°, 130°.
5. 20°, 70°, 90°.
Объяснение:
1. ∠ACB=x. Тогда ∠BAC=4x.
Сумма углов треугольника равна 180°. Тук как угол В=90°, то
х+4х=90°;
5х=90°;
х=18° - угол BAC;
угол CAB =4x=4*18= 72°.
***
2. P=2(a+b) = 18 см, где а=х см, b=x+5 см .
2(х+х+5)=18;
2х+5=9;
2х=4;
х=2 см - меньшая сторона;
Большая сторона равна х+5=2+5=7 см.
Проверим:
Р=2(2+7)=2*9=18 см. Всё верно!
***
3) Треугольник АВО - равносторонний АВ=ВО=АО=12 см.
Диагонали в прямоугольнике делятся пополам. Следовательно АС=BD=2*AO=24 см .
***
4. В ромбе все стороны и противоположные углы равны. Следовательно треугольник АВС - равнобедренный с углом при вершине 130°.
Сумма углов в треугольнике равна 180°.
∠САВ+∠АВС+∠ВСА=180°;
∠ВАС=∠ВСА=(180°-130°)/2=25°.
***
5. Диагонали в ромбе пересекаются под углом 90° и углы при вершине делит пополам. Следовательно угол ∠АВО =∠АВС/2=140°/2=70°.
Сумма углов в треугольнике равна 180°:
∠АВО+∠ВОА+∠ОАВ=180°.
∠ВАО=180°-(70°+90°)=180°-160°=20°;