1. Угол, образованный двумя хордами, опирающийся на диаметр является прямым (по определению), следовательно углы В и Д в четырехугольнике АВСД равны 90 гр. Найдем два других угла. Рассмотрим треугольник АВО. Он равносторонний, тк. АВ=ВО и АО (по определению), которые есть радиусы окружности. Следовательно угол ВАО равен 60 гр. Рассмотрим треугольник АСД. Он прямоугольный и равнобедренный, т.к. хорды, стягивающие равные дуги, равны. Следовательно угол ДАО равен 45 гр. Теперь мы можем найти угол А четырех угольника. Это сумма углов ВАО и ДАО. Остается четвертый угол. Ну, это просто: все найденные углы вычитаем из 360 гр.
Рассмотрим треугольник АСД. Он прямоугольный и равнобедренный, т.к. хорды, стягивающие равные дуги, равны. Следовательно угол ДАО равен 45 гр. Теперь мы можем найти угол А четырех угольника. Это сумма углов ВАО и ДАО. Остается четвертый угол. Ну, это просто: все найденные углы вычитаем из 360 гр.
Дано :
Четырёхугольник ABCD - параллелограмм.
Отрезок DB - диагональ = 13 см.
∠ABD = 90°.
CD = 12 см.
Найти :
S(ABCD) = ?
AB ║ CD (по определению параллелограмма).
Рассмотрим накрест лежащие ∠ABD и ∠BDC при параллельных прямых АВ и CD и секущей BD.
При пересечении двух прямых секущей накрест лежащие углы равны.То есть -
∠ABD = ∠BDC = 90°.
Тогда отрезок BD - ещё и высота параллелограмма ABCD (по определению).
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.Следовательно -
S(ABCD) = BD*CD
S(ABCD) = 13 см*12 см
S(ABCD) = 156 см².
156 см².