Опустив высоту на большую сторону, мы получили два прямоугольных треугольника. Углы при основании равнобедренного равны по 30 градусов (180-120 = 60, 60:2 = 30). а катет, лежащий против угла 30 градусов, равен половине гипотенузы. по условию этот катет равен 7, значит гипотенуза 14 см. Найдем неизвестный катет по теореме Пифагора( следствию): = 196-49=147. Корень из 147 = 7 корней из 3 см. умножим на 2, чтобы получить основание равнобедренного треугольника и получим 14 корней из 3 - это и будет большая сторона равнобедренного треугольника
Проведем перпендикуляр N1N2 к прямой пересечения двух плоскостей N1M1. Т.к. и NN1 ⊥ N1M1, то угол NN1N2 будет углом между этими двумя плоскостями, а т.к. они перпендикулярны, то ∠NN1N2 = 90°.
Получаем, что прямая NN1 перпендикулярна двум пересекающимся прямым (N1M1 и N1N2) плоскости, а, следовательно перпендикулярна самой плоскости MM1N1 и как следствие прямой MN1. принадлежащей этой плоскости.
умножим на 2, чтобы получить основание равнобедренного треугольника и получим 14 корней из 3 - это и будет большая сторона равнобедренного треугольника
Из прямоугольного ΔMM1N1 по теореме Пифагора:
Проведем перпендикуляр N1N2 к прямой пересечения двух плоскостей N1M1. Т.к. и NN1 ⊥ N1M1, то угол NN1N2 будет углом между этими двумя плоскостями, а т.к. они перпендикулярны, то ∠NN1N2 = 90°.
Получаем, что прямая NN1 перпендикулярна двум пересекающимся прямым (N1M1 и N1N2) плоскости, а, следовательно перпендикулярна самой плоскости MM1N1 и как следствие прямой MN1. принадлежащей этой плоскости.
Т.е. ∠MN1N = 90°.
Из прямоугольного ΔMNN1 по теореме Пифагора: