В трапеции АВСД боковая сторона АВ перпендикулярна основанию ВС. Окружность проходит через точки С и Д и касается прямой АВ в точке Е. Найдите расстояние от точки Е до прямой СД, если АД=4, ВС=3.Решение начинаем с рисунка. Продлим сторону СД до пересечения с прямой АВ в точке М. Из вершины С трапеции опустим высоту СН на основание АД. АН=ВС=3 НД=АД-3=1 Рассмотрим треугольники МВС и СНД ∠ВСМ=∠НДС как соответственные при пересечении параллельных прямых секущей. Следовательно, треугольники ВМС и СНД подобны по двум равным углам - прямому и острому. Из подобия треугольников следует ∠ ВМС=∠ НСД ВС:НД=3:1 МС:СД=3:1 МС=3 СД Обозначим величину СД =х Тогда МС=3х, а МД=4х МЕ - касательная к окружности. МД = секущая Квадрат касательной равен произведению секущей на её внешнюю часть. МЕ²=МД*МС МЕ²=4х*3х=12х² МЕ=2х√3 Расстояние от точки до прямой измеряется перпендикуляром. ЕТ ⊥ МД Из прямоугольного треугольника МКЕ выразим ЕТ ЕТ=МЕ*sin ВМС. ∠ВМС=∠ НСД ( из подобия треугольников) sin∠ВМС=sin∠НСД=НД:СД=1:х ⇒ ЕТ=2х√3*1/х=2√3
В равностороннем треугольнике все углы равны 60° Т.к. AD - биссектриса, то угол DAC=углу BAD = 30° Равносторонний треугольник является также равнобедренным. В равнобедренном треугольнике биссектриса является также медианой и высотой. AD - высота расстояние от D до AC обозначим K. Расстояние от точки до прямой является перпендикуляром. Значит угол AKD = 90° В треугольнике AKD угол K=90° угол A=30° угол В=90-30=60° (сумма острых углов прямоугольного треугольника равна 90°) DK=6 см (по условию) Катет лежащий напротив угла 30° (A) равен половине гипотенузы DK равно половине AD AD = 2 · DK = 2 · 6=12 см
Продлим сторону СД до пересечения с прямой АВ в точке М.
Из вершины С трапеции опустим высоту СН на основание АД. АН=ВС=3
НД=АД-3=1
Рассмотрим треугольники МВС и СНД
∠ВСМ=∠НДС как соответственные при пересечении параллельных прямых секущей.
Следовательно, треугольники ВМС и СНД подобны по двум равным углам - прямому и острому.
Из подобия треугольников следует ∠ ВМС=∠ НСД
ВС:НД=3:1
МС:СД=3:1
МС=3 СД
Обозначим величину СД =х
Тогда МС=3х, а МД=4х
МЕ - касательная к окружности. МД = секущая
Квадрат касательной равен произведению секущей на её внешнюю часть.
МЕ²=МД*МС
МЕ²=4х*3х=12х²
МЕ=2х√3
Расстояние от точки до прямой измеряется перпендикуляром.
ЕТ ⊥ МД
Из прямоугольного треугольника МКЕ выразим ЕТ
ЕТ=МЕ*sin ВМС.
∠ВМС=∠ НСД ( из подобия треугольников)
sin∠ВМС=sin∠НСД=НД:СД=1:х ⇒
ЕТ=2х√3*1/х=2√3
Т.к. AD - биссектриса, то угол DAC=углу BAD = 30°
Равносторонний треугольник является также равнобедренным.
В равнобедренном треугольнике биссектриса является также медианой и высотой.
AD - высота
расстояние от D до AC обозначим K.
Расстояние от точки до прямой является перпендикуляром. Значит угол AKD = 90°
В треугольнике AKD
угол K=90°
угол A=30°
угол В=90-30=60° (сумма острых углов прямоугольного треугольника равна 90°)
DK=6 см (по условию)
Катет лежащий напротив угла 30° (A) равен половине гипотенузы
DK равно половине AD
AD = 2 · DK = 2 · 6=12 см