1) Т.к. шестиугольник правильный, то его сторона равна 8 см (48:6=8) Т.к. шестиугольник вписан в окружность, то его радиус можно найти по формуле : А6=2R*sin180/6 Отсюда R=Стороне= 8 см Так как квадрат вписан в ту же окружность, то А4=2r*sin180/4 Отсюда сторона квадрата равна корень из 2 умножить на 8 2) Площадь правильного многоугольника с числом сторон n, вписанного в окружность радиуса r, составляет S=r²n/2 sin(2π/n). Отсюда r=√(S/(n/2 sin(2π/n)))=√(72/(6/2 sin(2π/6)))=4 3^(1/4) l=2πr=8π 3^(1/4)
Точка М равноудалена от всех вершин равнобедренного прямоугольного треугольника , Значит т.М проектируется в центр окружности, описанной около треу. АВС, те есть на середину гипотенузы АВ. Пусть эта точка Е. МЕ=2*корень из 3 см. 1) Плоскость АМВ проходит через прямую МЕ, пепендикулярную плоскости АВС. Значит плоскость АМВ перпендикулярна плоскости АВС. 2)Проведем ЕД перпендикулярно СВ. Угол МДЕ-искомый. ЕД=1/2*АС=2. ТангенсМДЕ=2*корень из 3/2=корень из 3. Угол 60 град. 3) АВ=4*корень из2. СЕ=1/2АВ. Тангенс МСЕ=МЕ/СЕ=1. Угол 45 град.
Т.к. шестиугольник правильный, то его сторона равна 8 см (48:6=8) Т.к. шестиугольник вписан в окружность, то его радиус можно найти по формуле : А6=2R*sin180/6 Отсюда R=Стороне= 8 см Так как квадрат вписан в ту же окружность, то А4=2r*sin180/4 Отсюда сторона квадрата равна корень из 2 умножить на 8
2)
Площадь правильного многоугольника с числом сторон n, вписанного в окружность радиуса r, составляет S=r²n/2 sin(2π/n).
Отсюда r=√(S/(n/2 sin(2π/n)))=√(72/(6/2 sin(2π/6)))=4 3^(1/4)
l=2πr=8π 3^(1/4)
1) Плоскость АМВ проходит через прямую МЕ, пепендикулярную плоскости АВС. Значит плоскость АМВ перпендикулярна плоскости АВС.
2)Проведем ЕД перпендикулярно СВ. Угол МДЕ-искомый. ЕД=1/2*АС=2. ТангенсМДЕ=2*корень из 3/2=корень из 3. Угол 60 град.
3) АВ=4*корень из2. СЕ=1/2АВ. Тангенс МСЕ=МЕ/СЕ=1. Угол 45 град.